Historical review and future prospect for researches on very high cycle fatigue of metallic materials

被引:18
|
作者
Sakai, Tatsuo [1 ,2 ]
机构
[1] Ritsumeikan Univ, Res Org Sci & Technol, Kusatsu, Japan
[2] Ritsumeikan Univ, Res Org Sci & Technol, 525 8577 Japan, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan
关键词
crack initiation mechanism; duplex S-N characteristics; future prospect; historical review; metallic materials; very high cycle fatigue; SUBSURFACE CRACK INITIATION; ROLLING-CONTACT FATIGUE; COMPETING FAILURE MODES; HIGH-STRENGTH STEELS; CR-NI-STEELS; BEARING STEEL; VHCF REGIME; PROPAGATION PROPERTIES; DEFORMATION-BEHAVIOR; FRACTURE-MECHANICS;
D O I
10.1111/ffe.13885
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Since the first paper on the fatigue of metallic materials by J. Albert in 1837, tremendous numbers of papers have been published in various journals by many researchers all over the world. Based on such a long history, several papers on the very high cycle fatigue (VHCF) in the life-time longer than 10(7) cycles had appeared in some journals during the period of 1980's. One characteristic finding in these works is the fact that the metallic material can fail even at the stress level lower than the conventional fatigue limit. This fact means that the conventional fatigue design of mechanical structures cannot give the safety of the practical products in the very high cycle regime. Due to this fact, fatigue properties of structural materials in very long life regime has become an important subject; and a lot of studies have been carried out, and many important results have been accumulated until now. Typical aspects on VHCF property are summarized as follows: (1) the fatigue crack tends to occur around the interior inclusion, (2) fine granular area (FGA) is formed around such an inclusion, and (3) duplex S-N characteristics appear in the VHCF regime. In this paper, a brief historical review together with the future prospect on the very high cycle fatigue of metallic materials is attempted for the sake of reference to facilitate the research in this area.
引用
收藏
页码:1217 / 1255
页数:39
相关论文
共 50 条
  • [21] Very high cycle fatigue behavior of bearing steel with rare earth addition
    Yang, Chaoyun
    Luan, Yikun
    Li, Dianzhong
    Li, Yiyi
    Tariq, Naeem ul Haq
    INTERNATIONAL JOURNAL OF FATIGUE, 2020, 131 (131)
  • [22] Life Prediction Models in very High Cycle Fatigue Regime
    Song Yanan
    Xu Binshi
    Wang Haidou
    Zhang Yubo
    Xing Zhiguo
    RARE METAL MATERIALS AND ENGINEERING, 2016, 45 (05) : 1203 - 1208
  • [23] Fatigue behavior and mechanism of KMN in a very high cycle regime
    Wang, Pengfei
    Wang, Weiqiang
    Zhang, Ming
    Li, Jianfeng
    MATERIALS TESTING, 2018, 60 (01) : 55 - 60
  • [24] A two-parameter model to predict fatigue life of high-strength steels in a very high cycle fatigue regime
    Sun, Chengqi
    Liu, Xiaolong
    Hong, Youshi
    ACTA MECHANICA SINICA, 2015, 31 (03) : 383 - 391
  • [25] Very high cycle fatigue at elevated temperatures: A review on high temperature ultrasonic fatigue
    Avateffazeli, Maryam
    Webster, Garrett
    Tahmasbi, Kamin
    Haghshenas, Meysam
    JOURNAL OF SPACE SAFETY ENGINEERING, 2022, 9 (04): : 488 - 512
  • [26] Mechanism of crack initiation and early growth of high strength steels in very high cycle fatigue regime
    Song, Qingyuan
    Sun, Chengqi
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2020, 771
  • [27] Failure mechanisms of automotive metallic alloys in very high cycle fatigue range
    Bayraktar, Emin
    Garcias, Israel Marines
    Bathias, Claude
    INTERNATIONAL JOURNAL OF FATIGUE, 2006, 28 (11) : 1590 - 1602
  • [28] Effects of inclusions on very high cycle fatigue properties of high strength steels
    Li, S. X.
    INTERNATIONAL MATERIALS REVIEWS, 2012, 57 (02) : 92 - 114
  • [29] Effects of intermittent loading on fatigue life of a high strength steel in very high cycle fatigue regime
    Sun, Chengqi
    Song, Qingyuan
    Hu, Yuanpei
    Wei, Yujie
    INTERNATIONAL JOURNAL OF FATIGUE, 2018, 117 : 9 - 12
  • [30] On effect of hydrogen on very high cycle fatigue behaviours of high strength steels
    Shi, J. -B.
    Li, Y. D.
    Guo, W. M.
    Xu, N.
    Wu, X. F.
    Zhao, M.
    Ma, H.
    MATERIALS SCIENCE AND TECHNOLOGY, 2013, 29 (11) : 1290 - 1296