A two-strain reaction-diffusion malaria model with seasonality and vector-bias

被引:4
作者
Chu, Huijie [1 ]
Bai, Zhenguo [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 01期
基金
中国国家自然科学基金;
关键词
Malaria model; Two-strain; Seasonality; Reproduction number; Persistence and extinction; BORNE DISEASES; DYNAMICS; EPIDEMIOLOGY;
D O I
10.1007/s00033-022-01905-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To investigate the combined effects of drug resistance, seasonality and vector-bias, we formulate a periodic two-strain reaction-diffusion model. It is a competitive system for sensitive and resistant strains, but the single-strain subsystem is cooperative. We derive the basic reproduction number 72,i and the invasion reproduction number circumflex expressionccent 72,i for strain i = 1, 2, and establish the transmission dynamics in terms of these four quantities. More precisely, (i) if 72,1 < 1 and 72,2 < 1, then the disease is extinct; (ii) if 72,1 > 1 > 72,2 (72,2 > 1 > 72,1), then the sensitive (resistant) strains are persistent, while the resistant (sensitive) strains die out; (iii) if circumflex expressionccent 72,1 > 1 and circumflex expressionccent 72,2 > 1, then two strains are coexistent and periodic oscillation phenomenon is observed. We also study the asymptotic behavior of the basic reproduction number 72,0 = maxt72,1, 72,2} for our model regarding small and large diffusion coefficients. Numerically, we demonstrate the outcome of competition for two strains in different cases.
引用
收藏
页数:23
相关论文
共 41 条
  • [1] QUALITATIVE ASSESSMENT OF THE ROLE OF TEMPERATURE VARIATIONS ON MALARIA TRANSMISSION DYNAMICS
    Agusto, F. B.
    Gumel, A. B.
    Parham, P. E.
    [J]. JOURNAL OF BIOLOGICAL SYSTEMS, 2015, 23 (04) : 597 - 630
  • [2] Critical transitions in malaria transmission models are consistently generated by superinfection
    Alonso, David
    Dobson, Andy
    Pascual, Mercedes
    [J]. PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1775)
  • [3] Seasonality and the dynamics of infectious diseases
    Altizer, S
    Dobson, A
    Hosseini, P
    Hudson, P
    Pascual, M
    Rohani, P
    [J]. ECOLOGY LETTERS, 2006, 9 (04) : 467 - 484
  • [4] Mathematical modelling of drug resistant malaria parasites and vector populations
    Aneke, SJ
    [J]. MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (04) : 335 - 346
  • [5] The epidemic threshold of vector-borne diseases with seasonality
    Bacaer, Nicolas
    Guernaoui, Souad
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (03) : 421 - 436
  • [6] A reaction-diffusion malaria model with seasonality and incubation period
    Bai, Zhenguo
    Peng, Rui
    Zhao, Xiao-Qiang
    [J]. JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 77 (01) : 201 - 228
  • [7] MONOTONICITY OF SPECTRAL-RADIUS FOR POSITIVE OPERATORS ON ORDERED BANACH-SPACES
    BURLANDO, L
    [J]. ARCHIV DER MATHEMATIK, 1991, 56 (01) : 49 - 57
  • [8] A climate-driven abundance model to assess mosquito control strategies
    Cailly, Priscilla
    Tran, Annelise
    Balenghien, Thomas
    L'Ambert, Gregory
    Toty, Celine
    Ezanno, Pauline
    [J]. ECOLOGICAL MODELLING, 2012, 227 : 7 - 17
  • [9] Analysis of a Vector-Bias Model on Malaria Transmission
    Chamchod, Farida
    Britton, Nicholas F.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2011, 73 (03) : 639 - 657
  • [10] Determining important parameters in the spread of malaria through the sensitivity analysis of a mathematical model
    Chitnis, Nakul
    Hyman, James M.
    Cushing, Jim M.
    [J]. BULLETIN OF MATHEMATICAL BIOLOGY, 2008, 70 (05) : 1272 - 1296