A two-strain reaction-diffusion malaria model with seasonality and vector-bias

被引:4
作者
Chu, Huijie [1 ]
Bai, Zhenguo [1 ]
机构
[1] Xidian Univ, Sch Math & Stat, Xian 710126, Peoples R China
来源
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK | 2023年 / 74卷 / 01期
基金
中国国家自然科学基金;
关键词
Malaria model; Two-strain; Seasonality; Reproduction number; Persistence and extinction; BORNE DISEASES; DYNAMICS; EPIDEMIOLOGY;
D O I
10.1007/s00033-022-01905-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
To investigate the combined effects of drug resistance, seasonality and vector-bias, we formulate a periodic two-strain reaction-diffusion model. It is a competitive system for sensitive and resistant strains, but the single-strain subsystem is cooperative. We derive the basic reproduction number 72,i and the invasion reproduction number circumflex expressionccent 72,i for strain i = 1, 2, and establish the transmission dynamics in terms of these four quantities. More precisely, (i) if 72,1 < 1 and 72,2 < 1, then the disease is extinct; (ii) if 72,1 > 1 > 72,2 (72,2 > 1 > 72,1), then the sensitive (resistant) strains are persistent, while the resistant (sensitive) strains die out; (iii) if circumflex expressionccent 72,1 > 1 and circumflex expressionccent 72,2 > 1, then two strains are coexistent and periodic oscillation phenomenon is observed. We also study the asymptotic behavior of the basic reproduction number 72,0 = maxt72,1, 72,2} for our model regarding small and large diffusion coefficients. Numerically, we demonstrate the outcome of competition for two strains in different cases.
引用
收藏
页数:23
相关论文
共 41 条
[1]   QUALITATIVE ASSESSMENT OF THE ROLE OF TEMPERATURE VARIATIONS ON MALARIA TRANSMISSION DYNAMICS [J].
Agusto, F. B. ;
Gumel, A. B. ;
Parham, P. E. .
JOURNAL OF BIOLOGICAL SYSTEMS, 2015, 23 (04) :597-630
[2]   Critical transitions in malaria transmission models are consistently generated by superinfection [J].
Alonso, David ;
Dobson, Andy ;
Pascual, Mercedes .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2019, 374 (1775)
[3]   Seasonality and the dynamics of infectious diseases [J].
Altizer, S ;
Dobson, A ;
Hosseini, P ;
Hudson, P ;
Pascual, M ;
Rohani, P .
ECOLOGY LETTERS, 2006, 9 (04) :467-484
[4]   Mathematical modelling of drug resistant malaria parasites and vector populations [J].
Aneke, SJ .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2002, 25 (04) :335-346
[5]  
[Anonymous], 1992, PITMAN RES NOTES MAT
[6]   The epidemic threshold of vector-borne diseases with seasonality [J].
Bacaer, Nicolas ;
Guernaoui, Souad .
JOURNAL OF MATHEMATICAL BIOLOGY, 2006, 53 (03) :421-436
[7]   A reaction-diffusion malaria model with seasonality and incubation period [J].
Bai, Zhenguo ;
Peng, Rui ;
Zhao, Xiao-Qiang .
JOURNAL OF MATHEMATICAL BIOLOGY, 2018, 77 (01) :201-228
[8]   MONOTONICITY OF SPECTRAL-RADIUS FOR POSITIVE OPERATORS ON ORDERED BANACH-SPACES [J].
BURLANDO, L .
ARCHIV DER MATHEMATIK, 1991, 56 (01) :49-57
[9]   A climate-driven abundance model to assess mosquito control strategies [J].
Cailly, Priscilla ;
Tran, Annelise ;
Balenghien, Thomas ;
L'Ambert, Gregory ;
Toty, Celine ;
Ezanno, Pauline .
ECOLOGICAL MODELLING, 2012, 227 :7-17
[10]   Analysis of a Vector-Bias Model on Malaria Transmission [J].
Chamchod, Farida ;
Britton, Nicholas F. .
BULLETIN OF MATHEMATICAL BIOLOGY, 2011, 73 (03) :639-657