Torsion of elliptic curves in the compositum of Dihedral fields

被引:1
作者
Chou, Michael [1 ]
Karker, Mary Leah [1 ]
机构
[1] Providence Coll, Math & Comp Sci, 1 Cunningham Sq, Providence, RI 02918 USA
关键词
Elliptic curve; rational points; dihedral fields; POINTS; EXTENSIONS; SUBGROUPS;
D O I
10.1142/S1793042123500185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E/Q be an elliptic curve. Let Q(G) denote the compositum of all fields with Galois group G over Q. We classify the possible torsion subgroups of E over Q(Dn) for n not divisible by 3 or 4, where D-n is the dihedral group on a regular n-gon. We also obtain upper bounds for the torsion of E over Q(G) for various semi-direct products G = F-q(zeta(p)) (sic) Z/pZ by way of classifications of torsion over Q(Z/pqZ).
引用
收藏
页码:389 / 408
页数:20
相关论文
共 25 条
[11]   GROWTH OF TORSION GROUPS OF ELLIPTIC CURVES UPON BASE CHANGE [J].
Gonzalez-Jimenez, Enrique ;
Najman, Filip .
MATHEMATICS OF COMPUTATION, 2020, 89 (323) :1457-1485
[12]   Complete classification of the torsion structures of rational elliptic curves over quintic number fields [J].
Gonzalez-Jimenez, Enrique .
JOURNAL OF ALGEBRA, 2017, 478 :484-505
[13]   Elliptic curves with abelian division fields [J].
Gonzalez-Jimenez, Enrique ;
Lozano-Robledo, Alvaro .
MATHEMATISCHE ZEITSCHRIFT, 2016, 283 (3-4) :835-859
[14]   TORSION POINTS ON ELLIPTIC-CURVES AND Q-COEFFICIENTS OF MODULAR-FORMS [J].
KAMIENNY, S .
INVENTIONES MATHEMATICAE, 1992, 109 (02) :221-229
[16]  
KENKU MA, 1981, J LOND MATH SOC, V23, P415
[17]  
KENKU MA, 1980, J LOND MATH SOC, V22, P239
[19]   TORSION POINTS ON ELLIPTIC-CURVES DEFINED OVER QUADRATIC FIELDS [J].
KENKU, MA ;
MOMOSE, F .
NAGOYA MATHEMATICAL JOURNAL, 1988, 109 :125-149
[20]  
Knapp A.W., 1992, Elliptic curves