Torsion of elliptic curves in the compositum of Dihedral fields

被引:1
作者
Chou, Michael [1 ]
Karker, Mary Leah [1 ]
机构
[1] Providence Coll, Math & Comp Sci, 1 Cunningham Sq, Providence, RI 02918 USA
关键词
Elliptic curve; rational points; dihedral fields; POINTS; EXTENSIONS; SUBGROUPS;
D O I
10.1142/S1793042123500185
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let E/Q be an elliptic curve. Let Q(G) denote the compositum of all fields with Galois group G over Q. We classify the possible torsion subgroups of E over Q(Dn) for n not divisible by 3 or 4, where D-n is the dihedral group on a regular n-gon. We also obtain upper bounds for the torsion of E over Q(G) for various semi-direct products G = F-q(zeta(p)) (sic) Z/pZ by way of classifications of torsion over Q(Z/pqZ).
引用
收藏
页码:389 / 408
页数:20
相关论文
共 25 条
[1]  
Carmichael RD., 1914, THEORY NUMBERS
[2]   TORSION OF RATIONAL ELLIPTIC CURVES OVER THE MAXIMAL ABELIAN EXTENSION OF Q [J].
Chou, Michael .
PACIFIC JOURNAL OF MATHEMATICS, 2019, 302 (02) :481-509
[3]   Groups of generalized G-type and applications to torsion subgroups of rational elliptic curves over infinite extensions of Q [J].
Daniels, Harris B. ;
Derickx, Maarten ;
Hatley, Jeffrey .
TRANSACTIONS OF THE LONDON MATHEMATICAL SOCIETY, 2019, 6 (01) :22-52
[4]   ON THE TORSION OF RATIONAL ELLIPTIC CURVES OVER SEXTIC FIELDS [J].
Daniels, Harris B. ;
Gonzalez-Jimenez, Enrique .
MATHEMATICS OF COMPUTATION, 2020, 89 (321) :411-435
[5]   Torsion subgroups of rational elliptic curves over the compositum of all D4 extensions of the rational numbers [J].
Daniels, Harris B. .
JOURNAL OF ALGEBRA, 2018, 509 :535-565
[6]   TORSION SUBGROUPS OF RATIONAL ELLIPTIC CURVES OVER THE COMPOSITUM OF ALL CUBIC FIELDS [J].
Daniels, Harris B. ;
Lozano-Robledo, Alvaro ;
Najman, Filip ;
Sutherland, Andrew V. .
MATHEMATICS OF COMPUTATION, 2018, 87 (309) :425-458
[7]   Sporadic cubic torsion [J].
Derickx, Maarten ;
Etropolski, Anastassia ;
van Hoeij, Mark ;
Morrow, Jackson S. ;
Zureick-Brown, David .
ALGEBRA & NUMBER THEORY, 2021, 15 (07) :1837-1864
[8]  
Fried, 2004, FIELD ARITHMETIC ERG, V11
[10]   On the compositum of all degree d extensions of a number field [J].
Gal, Itamar ;
Grizzard, Robert .
JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2014, 26 (03) :655-672