Harnack inequality for nonlocal problems with non-standard growth

被引:14
作者
Chaker, Jamil [1 ]
Kim, Minhyun [1 ]
Weidner, Marvin [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33615 Bielefeld, Germany
关键词
35B65; 47G20; 35D30; 35B45; 35A15; REGULARITY;
D O I
10.1007/s00208-022-02405-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a full Harnack inequality for local minimizers, as well as weak solutions to nonlocal problems with non-standard growth. The main auxiliary results are local boundedness and a weak Harnack inequality for functions in a corresponding De Giorgi class. This paper builds upon a recent work on regularity estimates for such nonlocal problems by the same authors.
引用
收藏
页码:533 / 550
页数:18
相关论文
共 33 条
[11]  
Chaker J., 2021, ARXIV210706043
[12]  
Chaker J., 2021, ARXIV211109182
[13]   Elliptic Harnack inequalities for symmetric non-local Dirichlet forms [J].
Chen, Zhen-Qing ;
Kumagai, Takashi ;
Wang, Jian .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2019, 125 :1-42
[14]   Heat kernel estimates for stable-like processes on d-sets [J].
Chen, ZQ ;
Kumagai, T .
STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2003, 108 (01) :27-62
[15]   Regularity results and Harnack inequalities for minimizers and solutions of nonlocal problems: A unified approach via fractional De Giorgi classes [J].
Cozzi, Matteo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (11) :4762-4837
[16]   Holder regularity for nonlocal double phase equations [J].
De Filippis, Cristiana ;
Palatucci, Giampiero .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 267 (01) :547-586
[17]   Nonlocal Harnack inequalities [J].
Di Castro, Agnese ;
Kuusi, Tuomo ;
Palatucci, Giampiero .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (06) :1807-1836
[18]  
Fang Y., 2022, ARXIV220109495
[19]   On Weak and Viscosity Solutions of Nonlocal Double Phase Equations [J].
Fang, Yuzhou ;
Zhang, Chao .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2021, :3746-3789
[20]   Fractional order Orlicz-Sobolev spaces [J].
Fernandez Bonder, Julian ;
Salort, Ariel M. .
JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 277 (02) :333-367