Harnack inequality for nonlocal problems with non-standard growth

被引:14
作者
Chaker, Jamil [1 ]
Kim, Minhyun [1 ]
Weidner, Marvin [1 ]
机构
[1] Univ Bielefeld, Fak Math, D-33615 Bielefeld, Germany
关键词
35B65; 47G20; 35D30; 35B45; 35A15; REGULARITY;
D O I
10.1007/s00208-022-02405-9
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a full Harnack inequality for local minimizers, as well as weak solutions to nonlocal problems with non-standard growth. The main auxiliary results are local boundedness and a weak Harnack inequality for functions in a corresponding De Giorgi class. This paper builds upon a recent work on regularity estimates for such nonlocal problems by the same authors.
引用
收藏
页码:533 / 550
页数:18
相关论文
共 33 条
[1]   On fractional Orlicz-Sobolev spaces [J].
Alberico, Angela ;
Cianchi, Andrea ;
Pick, Lubos ;
Slavikova, Lenka .
ANALYSIS AND MATHEMATICAL PHYSICS, 2021, 11 (02)
[2]  
Barlow MT, 2009, T AM MATH SOC, V361, P1963
[3]   Harnack inequalities for non-local operators of variable order [J].
Bass, RF ;
Kassmann, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (02) :837-850
[4]   Harnack inequalities for jump processes [J].
Bass, RF ;
Levin, DA .
POTENTIAL ANALYSIS, 2002, 17 (04) :375-388
[5]   Harnack's inequality for stable Levy processes [J].
Bogdan, K ;
Sztonyk, P .
POTENTIAL ANALYSIS, 2005, 22 (02) :133-150
[6]  
Bonder J. Fernandez, ARXIV200805543
[7]  
Byun S.-S., ARXIV211213958
[8]  
Byun S-S., ARXIV210809623
[9]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[10]   Regularity Theory for Fully Nonlinear Integro-Differential Equations [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2009, 62 (05) :597-638