Leveraging Machine Learning to Unveil the Critical Role of Geographic Factors in COVID-19 Mortality in Mexico

被引:0
作者
Maldonado-Sifuentes, Christian E. [1 ]
Vargas-Santiago, Mariano [1 ]
Leon-Velasco, Diana A. [2 ]
Ortega-Garcia, M. Cristina [3 ]
Ledo-Mezquita, Yoel [2 ]
Castillo-Velasquez, Francisco A. [4 ]
机构
[1] Consejo Nacl Human Ciencia & Tecnol CONAHCYT, Mexico City, Mexico
[2] Inst Tecnol & Estudios Super Monterrey ITESM, Mexico City, Mexico
[3] Transdisciplinary Res Augmented Innovat Lab TRAI L, Mexico City, Mexico
[4] Univ Pontificia Mexico, Mexico City, Mexico
来源
COMPUTACION Y SISTEMAS | 2024年 / 28卷 / 01期
关键词
Diabetes; COVID-19; machine learning; SARS CoV-2; Cox; RMST;
D O I
10.13053/CyS-28-1-4908
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we present an in-depth analysis leveraging several renowned machine learning techniques, including Snap Random Forest, XGBoost, Extra Trees, and Snap Decision Trees, to characterize comorbidity factors influencing the Mexican population. Distinct from existing literature, our study undertakes a comprehensive exploration of algorithms within a defined search space, conducting experiments ranging from coarse to fine granularity. This approach, coupled with machine learning -driven feature enhancement, enables us to deeply characterize the factors most significantly affecting COVID-19 mortality rates within the Mexican demographic. Contrary to other studies, which obscure the identification of primary factors for local populations, our findings reveal that geographical factors such as residence location hold greater significance than even comorbidities, indicating that socioeconomic factors play a pivotal role in the survival outcomes of the Mexican population. This research not only contributes to the targeted understanding of COVID-19 mortality drivers in Mexico but also highlights the critical influence of socioeconomic determinants, offering valuable insights for public health strategies and policy formulation.
引用
收藏
页码:5 / 18
页数:14
相关论文
共 12 条
[1]   Machine Learning First Response to COVID-19: A Systematic Literature Review of Clinical Decision Assistance Approaches during Pandemic Years from 2020 to 2022 [J].
Badiola-Zabala, Goizalde ;
Lopez-Guede, Jose Manuel ;
Estevez, Julian ;
Grana, Manuel .
ELECTRONICS, 2024, 13 (06)
[2]   Timeline of SARS-CoV-2 Transmission in Sabah, Malaysia: Tracking the Molecular Evolution [J].
Balakrishnan, Krishnan Nair ;
Yew, Chee Wei ;
Chong, Eric Tzyy Jiann ;
Daim, Sylvia ;
Mohamad, Nurul Elyani ;
Rodrigues, Kenneth ;
Lee, Ping-Chin .
PATHOGENS, 2023, 12 (08)
[3]   A generalizable and easy-to-use COVID-19 stratification model for the next pandemic via immune-phenotyping and machine learning [J].
He, Xinlei ;
Cui, Xiao ;
Zhao, Zhiling ;
Wu, Rui ;
Zhang, Qiang ;
Xue, Lei ;
Zhang, Hua ;
Ge, Qinggang ;
Leng, Yuxin .
FRONTIERS IN IMMUNOLOGY, 2024, 15
[4]  
Lages-dos-Santos A., 2024, Social Science Research Network, DOI [10.2139/ssrn.4740297, DOI 10.2139/SSRN.4740297]
[5]  
Latif Siddique, 2020, IEEE Trans Artif Intell, V1, P85, DOI 10.1109/TAI.2020.3020521
[6]   The impact of comorbidities and economic inequality on COVID-19 mortality in Mexico: a machine learning approach [J].
Mendez-Astudillo, Jorge .
FRONTIERS IN BIG DATA, 2024, 7
[7]   Association between mortality and cardiovascular diseases in the vulnerable Mexican population: A cross-sectional retrospective study of the COVID-19 pandemic [J].
Padilla-Rivas, Gerardo R. ;
Luis Delgado-Gallegos, Juan ;
Garza-Trevino, Gerardo ;
Galan-Huerta, Kame A. ;
G-Buentello, Zuca ;
Roacho-Perez, Jorge A. ;
Giovana Santoyo-Suarez, Michelle ;
Franco-Villareal, Hector ;
Leyva-Lopez, Ahidee ;
Estrada-Rodriguez, Ana E. ;
Moreno-Cuevas, Jorge E. ;
Ramos-Jimenez, Javier ;
Rivas-Estrilla, Ana M. ;
Garza-Trevino, Elsa N. ;
Francisco Islas, Jose .
FRONTIERS IN PUBLIC HEALTH, 2022, 10
[8]   ICU Admission Risk Factors for Latinx COVID-19 Patients at a US-Mexico Border Hospital [J].
Quenzer, Faith C. ;
Coyne, Christopher J. ;
Ferran, Karen ;
Williams, Ashley ;
Lafree, Andrew T. ;
Kajitani, Sten ;
Mathen, George ;
Villegas, Vanessa ;
Kajitani, Kari M. ;
Tomaszewski, Christian ;
Brodine, Stephanie .
JOURNAL OF RACIAL AND ETHNIC HEALTH DISPARITIES, 2023, 10 (06) :3039-3050
[9]   Leveraging machine learning to analyze sentiment from COVID-19 tweets: A global perspective [J].
Rahman, Md Mahbubar ;
Khan, Nafiz Imtiaz ;
Sarker, Iqbal H. ;
Ahmed, Mohiuddin ;
Islam, Muhammad Nazrul .
ENGINEERING REPORTS, 2023, 5 (03)
[10]   COVID-19 over the last 3 years in China, what we've learned [J].
Shi, Jiang ;
Chen, Fenghua ;
Chen, Shugong ;
Ling, Haoqing .
FRONTIERS IN PUBLIC HEALTH, 2023, 11