MgMViT: Multi-Granularity and Multi-Scale Vision Transformer for Efficient Action Recognition

被引:1
|
作者
Huo, Hua [1 ]
Li, Bingjie [1 ]
机构
[1] Henan Univ Sci & Technol, Informat Engn Coll, Luoyang 471000, Peoples R China
基金
中国国家自然科学基金;
关键词
action recognition; multi-granularity multi-scale fusion; vision transformer; efficiency;
D O I
10.3390/electronics13050948
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Nowadays, the field of video-based action recognition is rapidly developing. Although Vision Transformers (ViT) have made great progress in static image processing, they are not yet fully optimized for dynamic video applications. Convolutional Neural Networks (CNN) and related models perform exceptionally well in video action recognition. However, there are still some issues that cannot be ignored, such as high computational costs and large memory consumption. In the face of these issues, current research focuses on finding effective methods to improve model performance and overcome current limits. Therefore, we present a unique Vision Transformer model based on multi-granularity and multi-scale fusion to accomplish efficient action recognition, which is designed for action recognition in videos to effectively reduce computational costs and memory usage. Firstly, we devise a multi-scale, multi-granularity module that integrates with Transformer blocks. Secondly, a hierarchical structure is utilized to manage information at various scales, and we introduce multi-granularity on top of multi-scale, which allows for a selective choice of the number of tokens to enter the next computational step, thereby reducing redundant tokens. Thirdly, a coarse-fine granularity fusion layer is introduced to reduce the sequence length of tokens with lower information content. The above two mechanisms are combined to optimize the allocation of resources in the model, further emphasizing critical information and reducing redundancy, thereby minimizing computational costs. To assess our proposed approach, comprehensive experiments are conducted by using benchmark datasets in the action recognition domain. The experimental results demonstrate that our method has achieved state-of-the-art performance in terms of accuracy and efficiency.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Multi-granularity transformer fusion for temporal action localization
    Zhang M.
    Hu H.
    Li Z.
    Soft Computing, 2024, 28 (20) : 12377 - 12388
  • [2] Data-efficient multi-scale fusion vision transformer
    Tang, Hao
    Liu, Dawei
    Shen, Chengchao
    PATTERN RECOGNITION, 2025, 161
  • [3] DeepFake detection with multi-scale convolution and vision transformer
    Lin, Hao
    Huang, Wenmin
    Luo, Weiqi
    Lu, Wei
    DIGITAL SIGNAL PROCESSING, 2023, 134
  • [4] DilateFormer: Multi-Scale Dilated Transformer for Visual Recognition
    Jiao, Jiayu
    Tang, Yu-Ming
    Lin, Kun-Yu
    Gao, Yipeng
    Ma, Andy J.
    Wang, Yaowei
    Zheng, Wei-Shi
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 8906 - 8919
  • [5] MSAPVT: a multi-scale attention pyramid vision transformer network for large-scale fruit recognition
    Rao, Yao
    Li, Chaofeng
    Xu, Feiran
    Guo, Ya
    JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION, 2024, 18 (11) : 9233 - 9251
  • [6] A Multi-Scale Video Longformer Network for Action Recognition
    Chen, Congping
    Zhang, Chunsheng
    Dong, Xin
    APPLIED SCIENCES-BASEL, 2024, 14 (03):
  • [7] Evolution modeling with multi-scale smoothing for action recognition
    Wang, Tingwei
    Liu, Chuancai
    Wang, Liantao
    Ma, Bingxian
    Gu, Xingjian
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2018, 55 : 778 - 788
  • [8] Hierarchical Multi-scale Attention Networks for action recognition
    Yan, Shiyang
    Smith, Jeremy S.
    Lu, Wenjin
    Zhang, Bailing
    SIGNAL PROCESSING-IMAGE COMMUNICATION, 2018, 61 : 73 - 84
  • [9] MULTI-SCALE REGION CANDIDATE COMBINATION FOR ACTION RECOGNITION
    Zhao, Zhichen
    Ma, Huimin
    Chen, Xiaozhi
    2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2016, : 3071 - 3075
  • [10] MUP: Multi-granularity Unified Perception for Panoramic Activity Recognition
    Cao, Meiqi
    Yan, Rui
    Shu, Xiangbo
    Zhang, Jiachao
    Wang, Jinpeng
    Xie, Guo-Sen
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON MULTIMEDIA, MM 2023, 2023, : 7666 - 7675