Fourier coefficients of cusp forms on special sequences

被引:0
作者
Yao, Weili [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier coefficient; cusp forms; symmetric power L-functions; short intervals; POWER SUMS; EIGENVALUES;
D O I
10.1142/S1793042124500568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the square of the normalized Fourier coefficients of the primitive cusp forms f and its symmetric-lift at integers with a fixed number of distinct prime divisors, and present asymptotic formulas for them in short intervals.
引用
收藏
页码:1161 / 1190
页数:30
相关论文
共 24 条
[11]  
Iwaniec E., 2004, AM MATH SOCI ETY C P, V53, P12
[12]   On the signs of Fourier coefficients of cusp forms [J].
Knopp, M ;
Kohnen, W ;
Pribitkin, W .
RAMANUJAN JOURNAL, 2003, 7 (1-3) :269-277
[13]   SIGN CHANGES OF FOURIER COEFFICIENTS AND EIGENVALUES OF CUSP FORMS [J].
Kohnen, Winfried .
NUMBER THEORY: SAILING ON THE SEA OF NUMBER THEORY, 2007, 2 :97-107
[14]   On the fourth moment of coefficients of symmetric square L-function [J].
Lao, Huixue .
CHINESE ANNALS OF MATHEMATICS SERIES B, 2012, 33 (06) :877-888
[15]   Strong Subconvexity for Self-Dual GL(3) L-Functions [J].
Lin, Yongxiao ;
Nunes, Ramon ;
Qi, Zhi .
INTERNATIONAL MATHEMATICS RESEARCH NOTICES, 2023, 2023 (13) :11453-11470
[16]   GENERAL L-FUNCTIONS [J].
PERELLI, A .
ANNALI DI MATEMATICA PURA ED APPLICATA, 1982, 130 :287-306
[17]  
Rankin R.A., 1990, Automorphic Forms and Analytic Number Theory, P115
[18]   Contributions to the theory of Ramanujan's function tau-(n) and similar arithmetical functions II. The order of the fourier coefficients of integral modular forms [J].
Rankin, RA ;
Hardy, GH .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1939, 35 :357-372
[19]  
Sampurna P., 2023, ARXIV
[20]  
Selberg A., 1940, Arch. Math. Naturvid, V43, P47