Fourier coefficients of cusp forms on special sequences

被引:0
作者
Yao, Weili [1 ,2 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Newtouch Ctr Math, Shanghai 200444, Peoples R China
基金
中国国家自然科学基金;
关键词
Fourier coefficient; cusp forms; symmetric power L-functions; short intervals; POWER SUMS; EIGENVALUES;
D O I
10.1142/S1793042124500568
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we investigate the square of the normalized Fourier coefficients of the primitive cusp forms f and its symmetric-lift at integers with a fixed number of distinct prime divisors, and present asymptotic formulas for them in short intervals.
引用
收藏
页码:1161 / 1190
页数:30
相关论文
共 24 条
[1]   A burgess-like subconvex bound for twisted L-functions [J].
Blomer, V. ;
Harcos, G. ;
Michel, P. ;
Mao, Z. .
FORUM MATHEMATICUM, 2007, 19 (01) :61-105
[2]   The Selberg-Delange method in short intervals with some applications [J].
Cui, Zhen ;
Lu, Guangshi ;
Wu, Jie .
SCIENCE CHINA-MATHEMATICS, 2019, 62 (03) :447-468
[3]  
Davenport H, 1933, J REINE ANGEW MATH, V169, P158
[4]  
Deligne P, 1974, PUBL MATH-PARIS, V43, P273
[5]   MEAN VALUE THEOREMS FOR AUTOMORPHIC L-FUNCTIONS [J].
Fomenko, O. M. .
ST PETERSBURG MATHEMATICAL JOURNAL, 2008, 19 (05) :853-866
[6]  
Fomenko OM., 2006, J. Math. Sci. (N.Y.), V133, P1749, DOI [10.1007/s10958-006-0086-x, DOI 10.1007/S10958-006-0086-X]
[7]  
HAFNER J. L., 1989, Enseign. Math., V35, P375
[8]   INTEGRAL POWER SUMS OF FOURIER COEFFICIENTS OF SYMMETRIC SQUARE L-FUNCTIONS [J].
He, Xiaoguang .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2019, 147 (07) :2847-2856
[9]   Oscillations of Fourier coefficients of cusp forms over primes [J].
Hou, Fei ;
Lu, Guangshi .
JOURNAL OF NUMBER THEORY, 2016, 159 :370-383
[10]   On the Rankin-Selberg problem [J].
Huang, Bingrong .
MATHEMATISCHE ANNALEN, 2021, 381 (3-4) :1217-1251