Free Liquid Surface Electrospinning Using a Spiral Tip for Large-Scale Nanofiber Production

被引:2
作者
Zhao, Xu [1 ]
Li, Fang [2 ]
Guo, Hao [3 ]
Cui, Wei [3 ]
Sun, Xiaoyan [3 ]
Wang, Rongwu [1 ]
Jin, Xuling [4 ]
Liu, Yanping [1 ]
He, Jianxin [3 ]
Ji, Dongxiao [1 ]
机构
[1] Donghua Univ, Coll Text, Key Lab Text Sci & Technol, Minist Educ, Shanghai 201620, Peoples R China
[2] Shinshu Univ, Grad Sch Med Sci & Technol, Ueda, Nagano 3868567, Japan
[3] Zhongyuan Univ Technol, Int Joint Lab New Text Mat & Text Henan Prov, Zhengzhou 450007, Henan, Peoples R China
[4] Henan Garment Res Inst Co Ltd, Zhengzhou 450007, Peoples R China
基金
中国国家自然科学基金;
关键词
electric field simulation; electrospinning; nanofiber; needleless; spiral linear electrode; HIGH-THROUGHPUT; NEEDLELESS;
D O I
10.1021/acsapm.4c00004
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Versatile and reliable techniques for generating nanofibers are critical for their large-scale commercial application. This paper proposes a free liquid surface electrospinning method that leverages the unique uniformly distributed spiral projections of linear spiral electrodes for large-scale electrospinning. This technique is instrumental in producing a high curvature of the free liquid surface and the tip effect of the electric field, which efficiently enhances the excitation frequency, quantity, and drafting effect of the jets. The influence of electrode geometry, electrode spacing, and applied voltage on the electric field distribution is simulated using the finite element method. The results show that under the same conditions, the electric field strength of the spiral linear electrode surpasses that of the cylindrical electrode. The interference among the electric field lines disappears with an electrode spacing of 210 mm. Due to the increase in interface curvature, we obtained nanofibers with exceptional morphological characteristics, low dispersion, and adjustable diameters. Simultaneously, the jet density drastically increased, enabling the productivity of nanofibers obtained from a single electrode per unit length to reach 4.27 g/h/m, which is 2-3 orders of magnitude higher than the yield of laboratory electrospinning. Therefore, the electrospinning method that we proposed has the potential to revolutionize the application of nanofibers in large-scale industrial production.
引用
收藏
页码:2983 / 2992
页数:10
相关论文
共 26 条
[1]   Toothed wheel needleless electrospinning: a versatile way to fabricate uniform and finer nanomembrane [J].
Ahmad, Adnan ;
Ali, Usman ;
Nazir, Ahsan ;
Shahzad, Amir ;
Khaliq, Zubair ;
Qadir, Muhammad Bilal ;
Khan, Muhammad Amir ;
Ali, Sultan ;
Hassan, M. Aamir ;
Abid, Sharjeel ;
Tahir, Rizwan ;
Mushtaq, Bushra .
JOURNAL OF MATERIALS SCIENCE, 2019, 54 (21) :13834-13847
[2]   Needleless electrospinning using sprocket wheel disk spinneret [J].
Ali, Usman ;
Niu, Haitao ;
Aslam, Sarmad ;
Jabbar, Abdul ;
Rajput, Abdul Waqar ;
Lin, Tong .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (12) :7567-7577
[3]   Degradable nanofiber for eco-friendly air filtration: Progress and perspectives [J].
Bian, Ye ;
Zhang, Chencheng ;
Wang, Hui ;
Cao, Qi .
SEPARATION AND PURIFICATION TECHNOLOGY, 2023, 306
[4]   Electrospinning on a plucked string [J].
Chen, Xiaoqing ;
Zhang, Youchen ;
He, Xuetao ;
Li, Haoyi ;
Wei, Bin ;
Yang, Weimin .
JOURNAL OF MATERIALS SCIENCE, 2019, 54 (01) :901-910
[5]   Enhanced mechanical energy harvesting using needleless electrospun poly(vinylidene fluoride) nanofibre webs [J].
Fang, Jian ;
Niu, Haitao ;
Wang, Hongxia ;
Wang, Xungai ;
Lin, Tong .
ENERGY & ENVIRONMENTAL SCIENCE, 2013, 6 (07) :2196-2202
[6]   A Novel Needleless Electrospinning System Using a Moving Conventional Yarn as the Spinneret [J].
He, Hai-Jun ;
Liu, Cheng-Kun ;
Molnar, Kolos .
FIBERS AND POLYMERS, 2018, 19 (07) :1472-1478
[7]   Improving Needleless Electrospinning Throughput by Tailoring Polyurethane Solution Properties with Polysiloxane Additives [J].
Iranshahi, Kamran ;
Schoeller, Jean ;
Luisier, Nicolas ;
Chung, Michael ;
Hashemizadeh, Sina ;
Fortunato, Giuseppino ;
Defraeye, Thijs ;
Rossi, Rene M. .
ACS APPLIED POLYMER MATERIALS, 2022, 4 (03) :2205-2215
[8]   High throughput of quality nanofibers via one stepped pyramid-shaped spinneret [J].
Jiang, Guojun ;
Zhang, Sai ;
Qin, Xiaohong .
MATERIALS LETTERS, 2013, 106 :56-58
[9]  
Jing X, 2015, J MATER SCI, V50, P4174, DOI 10.1007/s10853-015-8933-0
[10]   Conductive Cellulose Nanofiber Enabled Thick Electrode for Compact and Flexible Energy Storage Devices [J].
Kuang, Yudi ;
Chen, Chaoji ;
Pastel, Glenn ;
Li, Yiju ;
Song, Jianwei ;
Mi, Ruiyu ;
Kong, Weiqing ;
Liu, Boyang ;
Jiang, Yingqi ;
Yang, Ken ;
Hu, Liangbing .
ADVANCED ENERGY MATERIALS, 2018, 8 (33)