Dynamic Template Updating Using Spatial-Temporal Information in Siamese Trackers

被引:1
|
作者
Wang, Yuanhui [1 ,2 ]
Ye, Ben [1 ]
Cai, Zhanchuan [1 ]
机构
[1] Macau Univ Sci & Technol, Sch Comp Sci & Engn, Macau 999078, Peoples R China
[2] Zhuhai Coll Sci & Technol, Sch Comp Sci, Zhuhai 519041, Guangdong, Peoples R China
关键词
Object tracking; siamese tracker; dynamic template updating; spatial-temporal information; tracking confidence network; TRACKING; NETWORKS;
D O I
10.1109/TMM.2023.3291140
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Siamese trackers usually use the target in the first frame as a fixed template, but the static template cannot adapt to target changes. The existing updater is challenging to deal with target deformation and update noise, and there is an excellent risk of updating with an inaccurate updater. In our research, a dynamic template updating strategy based on spatial-temporal information is proposed to improve the tracking accuracy of the Siamese tracker. Furthermore, Tracking Confidence Network (TCNet) is proposed to judge whether to update, which ensures that high-quality target features are used to update and reduce the noise caused by adding unreliable targets. In experiments, the proposed method is embedded into two baseline trackers: SiamRPN and SiamFC++, and tested on five popular benchmarks. The experimental results show that the proposed method can improve the performance of the Siamese trackers while maintaining real-time speed.
引用
收藏
页码:2006 / 2015
页数:10
相关论文
共 50 条
  • [31] Registration of Longitudinal Image Sequences with Implicit Template and Spatial-Temporal Heuristics
    Wu, Guorong
    Wang, Qian
    Jia, Hongjun
    Shen, Dinggang
    MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION - MICCAI 2010, PT II,, 2010, 6362 : 618 - 625
  • [32] Spatial-temporal analysis of landslides in complex hillslopes of catchments using Dynamic Topmodel
    Bahmani, Farid
    Fattahi, Mohamad Hadi
    Sabzevari, Touraj
    Haghighi, Ali Torabi
    Talebi, Ali
    ACTA GEOPHYSICA, 2022, 70 (03) : 1417 - 1432
  • [33] Predicting Traffic Flow Using Dynamic Spatial-Temporal Graph Convolution Networks
    Liu, Yunchang
    Wan, Fei
    Liang, Chengwu
    CMC-COMPUTERS MATERIALS & CONTINUA, 2024, 78 (03): : 4343 - 4361
  • [34] Spatial-Temporal Fusion for High Accuracy Depth Maps Using Dynamic MRFs
    Zhu, Jiejie
    Wang, Liang
    Gao, Jizhou
    Yang, Ruigang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (05) : 899 - 909
  • [35] Indexing of Hierarchically Organized Spatial-Temporal Data Using Dynamic Regular Octrees
    Morozov, Sergey
    Semenov, Vitaly
    Tarlapan, Oleg
    Zolotov, Vladislav
    PERSPECTIVES OF SYSTEM INFORMATICS, PSI 2017, 2018, 10742 : 276 - 290
  • [36] Lightweight Spatial-Temporal Contextual Aggregation Siamese Network for Unmanned Aerial Vehicle Tracking
    Chen, Qiqi
    Liu, Jinghong
    Liu, Faxue
    Xu, Fang
    Liu, Chenglong
    Gonzalez-Aguilera, Diego
    DRONES, 2024, 8 (01)
  • [37] Online decentralized information gathering with spatial-temporal constraints
    Gan, Seng Keat
    Fitch, Robert
    Sukkarieh, Salah
    AUTONOMOUS ROBOTS, 2014, 37 (01) : 1 - 25
  • [38] A video segmentation algorithm based on spatial-temporal information
    Zhu, H
    Li, ZM
    2002 INTERNATIONAL CONFERENCE ON COMMUNICATIONS, CIRCUITS AND SYSTEMS AND WEST SINO EXPOSITION PROCEEDINGS, VOLS 1-4, 2002, : 566 - 569
  • [39] Dissemination of spatial-temporal information in mobile networks with hotspots
    Wolfson, O
    Xu, B
    Yin, HB
    DATABASES, INFORMATION SYSTEMS, AND PEER-TO-PEER COMPUTING, 2005, 3367 : 185 - 199
  • [40] Modeling Spatial-Temporal Context Information in Virtual Worlds
    Arroyo, Angel
    Serradilla, Francisco
    Calvo, Oscar
    TRENDS IN APPLIED INTELLIGENT SYSTEMS, PT I, PROCEEDINGS, 2010, 6096 : 437 - 447