Dynamic Template Updating Using Spatial-Temporal Information in Siamese Trackers

被引:1
|
作者
Wang, Yuanhui [1 ,2 ]
Ye, Ben [1 ]
Cai, Zhanchuan [1 ]
机构
[1] Macau Univ Sci & Technol, Sch Comp Sci & Engn, Macau 999078, Peoples R China
[2] Zhuhai Coll Sci & Technol, Sch Comp Sci, Zhuhai 519041, Guangdong, Peoples R China
关键词
Object tracking; siamese tracker; dynamic template updating; spatial-temporal information; tracking confidence network; TRACKING; NETWORKS;
D O I
10.1109/TMM.2023.3291140
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Siamese trackers usually use the target in the first frame as a fixed template, but the static template cannot adapt to target changes. The existing updater is challenging to deal with target deformation and update noise, and there is an excellent risk of updating with an inaccurate updater. In our research, a dynamic template updating strategy based on spatial-temporal information is proposed to improve the tracking accuracy of the Siamese tracker. Furthermore, Tracking Confidence Network (TCNet) is proposed to judge whether to update, which ensures that high-quality target features are used to update and reduce the noise caused by adding unreliable targets. In experiments, the proposed method is embedded into two baseline trackers: SiamRPN and SiamFC++, and tested on five popular benchmarks. The experimental results show that the proposed method can improve the performance of the Siamese trackers while maintaining real-time speed.
引用
收藏
页码:2006 / 2015
页数:10
相关论文
共 50 条
  • [21] Smart Patrolling Based on Spatial-Temporal Information Using Machine Learning
    Guevara, Cesar
    Santos, Matilde
    MATHEMATICS, 2022, 10 (22)
  • [22] Effective shot boundary classification using video spatial-temporal information
    Lu, H
    Wang, B
    Xue, XY
    Tan, YP
    2005 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), VOLS 1-6, CONFERENCE PROCEEDINGS, 2005, : 3837 - 3840
  • [23] Dynamic quantitative phase imaging using deep spatial-temporal prior
    Li, Siteng
    Wang, Fei
    Fu, Zhenfeng
    Bian, Yaoming
    Situ, Guohai
    OPTICS EXPRESS, 2025, 33 (04): : 7482 - 7491
  • [24] Dynamic discrimination analysis: A spatial-temporal SVM
    Mouao-Miranda, Janaina
    Friston, Karl J.
    Brammer, Michael
    NEUROIMAGE, 2007, 36 (01) : 88 - 99
  • [25] Spatial-Temporal Editing for Dynamic Hair Data
    Wu, Yijie
    Bao, Yongtang
    Qi, Yue
    2017 INTERNATIONAL CONFERENCE ON VIRTUAL REALITY AND VISUALIZATION (ICVRV 2017), 2017, : 336 - 341
  • [26] Spatial-temporal memory based on a dynamic system
    Kotov, VB
    Politova, SV
    JOURNAL OF COMMUNICATIONS TECHNOLOGY AND ELECTRONICS, 2003, 48 (08) : 903 - 908
  • [27] A spatial-temporal system for dynamic cadastral management
    Liu, N
    Liu, RY
    Zhu, GL
    Xie, J
    JOURNAL OF ENVIRONMENTAL MANAGEMENT, 2006, 78 (04) : 373 - 381
  • [28] Modeling Dynamic Spatial-Temporal Cluster Relationships
    Portugal, Ivens
    Alencar, Paulo
    Cowan, Donald
    2019 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2019, : 3590 - 3598
  • [29] Object tracking based on adaptive updating of a spatial-temporal context model
    Feng, Wanli
    Cen, Yigang
    Zeng, Xianyou
    Li, Zhetao
    Zeng, Ming
    Voronin, Viacheslav
    KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS, 2017, 11 (11): : 5459 - 5473
  • [30] MEK: Using spatial-temporal information to improve social networks and knowledge dissemination
    Monclar, Rafael
    Tecla, Alessandro
    Oliveira, Jonice
    de Souza, Jano M.
    INFORMATION SCIENCES, 2009, 179 (15) : 2524 - 2537