共 50 条
Dynamics studies for the multi-well and multi-channel reaction of OH with C2H2 on a full-dimensional global potential energy surface
被引:1
|作者:
Zhang, Shuwen
[1
]
Chen, Qixin
[1
]
Zhang, Lidong
[2
,3
]
Li, Jun
[4
,5
]
Hu, Xixi
[6
,7
]
Xie, Daiqian
[1
,7
]
机构:
[1] Nanjing Univ, Inst Theoret & Computat Chem, Sch Chem & Chem Engn, Key Lab Mesoscop Chem, Nanjing 210023, Peoples R China
[2] Univ Sci & Technol China, Natl Synchrotron Radiat Lab, Hefei 230029, Peoples R China
[3] Univ Sci & Technol China, Key Lab Fire Sci, Hefei 230026, Peoples R China
[4] Chongqing Univ, Sch Chem & Chem Engn, Chongqing 401331, Peoples R China
[5] Chongqing Univ, Chongqing Key Lab Theoret & Computat Chem, Chongqing 401331, Peoples R China
[6] Nanjing Univ, Kuang Yaming Honors Sch, Nanjing 210023, Peoples R China
[7] Hefei Natl Lab, Hefei 230088, Peoples R China
基金:
中国国家自然科学基金;
关键词:
TEMPERATURE-DEPENDENCE;
RATE CONSTANTS;
RADICAL REACTION;
SHOCK-TUBE;
ACETYLENE;
PRESSURE;
OH+C2H2;
COMBUSTION;
ABSORPTION;
KINETICS;
D O I:
10.1039/d3cp05811e
中图分类号:
O64 [物理化学(理论化学)、化学物理学];
学科分类号:
070304 ;
081704 ;
摘要:
The C2H2 + OH reaction is an important acetylene oxidation pathway in the combustion process, as well as a typical multi-well and multi-channel reaction. Here, we report an accurate full-dimensional machine learning-based potential energy surface (PES) for the C2H2 + OH reaction at the UCCSD(T)-F12b/cc-pVTZ-F12 level, based on about 475 000 ab initio points. Extensive quasi-classical trajectory (QCT) calculations were performed on the newly developed PES to obtain detailed dynamic data and analyze reaction mechanisms. Below 1000 K, the C2H2 + OH reaction produces H + OCCH2 and CO + CH3. With increasing temperature, the product channels H2O + C2H and H + HCCOH are accessible and the former dominates above 1900 K. It is found that the formation of H2O + C2H is dominated by a direct reaction process, while other channels belong to the indirect mechanism involving long-lived intermediates along the reaction pathways. At low temperatures, the C2H2 + OH reaction behaves like an unimolecular reaction due to the unique PES topographic features, of which the dynamic features are similar to the decomposition of energy-rich complexes formed by C2H2 + OH collision. The classification of trajectories that undergo different reaction pathways to generate each product and their product energy distributions were also reported in this work. This dynamic information may provide a deep understanding of the C2H2 + OH reaction.
引用
收藏
页码:7351 / 7362
页数:12
相关论文