Transport coefficients for higher dimensional quantum Hall effect

被引:1
作者
Karabali, Dimitra [1 ,3 ]
Nair, V. P. [2 ,3 ]
机构
[1] CUNY Lehman Coll, Phys & Astron Dept, Bronx, NY 10468 USA
[2] CUNY City Coll, Phys Dept, New York, NY 10031 USA
[3] CUNY, Grad Ctr, New York, NY 10016 USA
基金
美国国家科学基金会;
关键词
EDGE STATES; BERRY PHASE; CONDUCTANCE; INVARIANCE;
D O I
10.1103/PhysRevB.108.205155
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
An effective action for the bulk dynamics of the quantum Hall effect in arbitrary, even spatial dimensions was obtained some time ago in terms of a Chern-Simons term associated with the Dolbeault index theorem. Here we explore further properties of this action, showing how electronic band structures can be incorporated, obtaining Hall currents and conductivity (for arbitrary dimensions) in terms of integrals of Chern classes for the bands. We also derive the expression for Hall viscosity from the effective action. Explicit formulas for the Hall viscosity are given for 2 + 1 and 4 + 1 dimensions.
引用
收藏
页数:15
相关论文
共 57 条
[1]   Electromagnetic and gravitational responses of two-dimensional noninteracting electrons in a background magnetic field [J].
Abanov, Alexander G. ;
Gromov, Andrey .
PHYSICAL REVIEW B, 2014, 90 (01)
[2]  
[Anonymous], 2008, Quantum Hall effects: Field theoretical approach and related topics
[3]   VISCOSITY OF QUANTUM HALL FLUIDS [J].
AVRON, JE ;
SEILER, R ;
ZOGRAF, PG .
PHYSICAL REVIEW LETTERS, 1995, 75 (04) :697-700
[4]   Eight-dimensional quantum Hall effect and "octonions" [J].
Bernevig, BA ;
Hu, JP ;
Toumbas, N ;
Zhang, SC .
PHYSICAL REVIEW LETTERS, 2003, 91 (23)
[5]   Effective field theory description of the higher dimensional quantum Hall liquid [J].
Bernevig, BA ;
Chern, CH ;
Hu, JP ;
Toumbas, N ;
Zhang, SC .
ANNALS OF PHYSICS, 2002, 300 (02) :185-207
[6]  
Bertimann R. A., 1996, Anomalies in Quantum Field Theory
[7]  
Bouhiron J. B., arXiv
[8]   Topological central charge from Berry curvature: Gravitational anomalies in trial wave functions for topological phases [J].
Bradlyn, Barry ;
Read, N. .
PHYSICAL REVIEW B, 2015, 91 (16)
[9]   Fractional Quantum Hall Effect in a Curved Space: Gravitational Anomaly and Electromagnetic Response [J].
Can, T. ;
Laskin, M. ;
Wiegmann, P. .
PHYSICAL REVIEW LETTERS, 2014, 113 (04)
[10]   Geometry of quantum Hall states: Gravitational anomaly and transport coefficients [J].
Can, Tankut ;
Laskin, Michael ;
Wiegmann, Paul B. .
ANNALS OF PHYSICS, 2015, 362 :752-794