Effects of SNP marker density and training population size on prediction accuracy in alfalfa (Medicago sativa L.) genomic selection

被引:4
作者
Wang, Hu [1 ]
Bai, Yuguang [1 ]
Biligetu, Bill [1 ,2 ]
机构
[1] Univ Saskatchewan, Coll Agr & Bioresources, Dept Plant Sci, Saskatoon, SK, Canada
[2] Univ Saskatchewan, Coll Agr & Bioresources, Dept Plant Sci, 51 Campus Dr, Saskatoon, SK S7N 5A8, Canada
关键词
QUANTITATIVE TRAITS; FORAGE YIELD; R PACKAGE; MODELS; IMPACT; OPTIMIZATION; IMPROVEMENT; RESISTANCE; REGRESSION; GENETICS;
D O I
10.1002/tpg2.20431
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Effects of individual single-nucleotide polymorphism (SNP) markers and the size of "training" and "test" populations affect prediction accuracy in genomic selection (GS). This study evaluated 11 subsets of 4932 SNPs using six genetic additive methods to understand marker density in GS prediction in alfalfa (Medicago sativa L.). In the GS methods, the effect of "training" to "test" population size was also evaluated. Fourteen alfalfa populations sampled from long-term grazing sites were genotyped using genotyping by sequencing for the identification of SNPs. These populations were also phenotyped for six agromorphological and three nutritive traits from 2018 to 2020. The accuracy of GS prediction improved across six GS methods when the ratio of "training" to "test" population size increased. However, the prediction accuracy of the six GS methods reduced to a range of -0.27 to 0.11 when random, uninformative SNPs were used. In this study, five Bayesian methods and ridge-regression best linear unbiased prediction (rrBLUP) method had similar GS accuracies for "training" sets, but rrBLUP tended to outperform Bayesian methods in independent "test" sets when SNP subsets with high mean-squared-estimated-marker effect were used. These findings can enhance the application of GS in alfalfa genetic improvement.
引用
收藏
页数:19
相关论文
共 92 条
[1]  
Adhikari L, 2019, BMC PLANT BIOL, V19, DOI 10.1186/s12870-019-1946-0
[2]   Genome-based prediction of testcross values in maize [J].
Albrecht, Theresa ;
Wimmer, Valentin ;
Auinger, Hans-Juergen ;
Erbe, Malena ;
Knaak, Carsten ;
Ouzunova, Milena ;
Simianer, Henner ;
Schoen, Chris-Carolin .
THEORETICAL AND APPLIED GENETICS, 2011, 123 (02) :339-350
[3]   Genome-Wide Association Analysis and Genomic Prediction for Adult-Plant Resistance to Septoria Tritici Blotch and Powdery Mildew in Winter Wheat [J].
Alemu, Admas ;
Brazauskas, Gintaras ;
Gaikpa, David S. ;
Henriksson, Tina ;
Islamov, Bulat ;
Jorgensen, Lise Nistrup ;
Koppel, Mati ;
Koppel, Reine ;
Liatukas, Zilvinas ;
Svensson, Jan T. ;
Chawade, Aakash .
FRONTIERS IN GENETICS, 2021, 12
[4]   AGHmatrix: R Package to Construct Relationship Matrices for Autotetraploid and Diploid Species: A Blueberry Example [J].
Amadeu, Rodrigo R. ;
Cellon, Catherine ;
Olmstead, James W. ;
Garcia, Antonio A. F. ;
Resende, Marcio F. R., Jr. ;
Munoz, Patricio R. .
PLANT GENOME, 2016, 9 (03)
[5]   Genomic prediction for canopy height and dry matter yield in alfalfa using family bulks [J].
Andrade, Mario Henrique Murad Leite ;
Acharya, Janam P. ;
Benevenuto, Juliana ;
Oliveira, Ivone de Bem ;
Lopez, Yolanda ;
Munoz, Patricio ;
Resende, Marcio F. R., Jr. ;
Rios, Esteban F. .
PLANT GENOME, 2022, 15 (03)
[6]   Alfalfa genomic selection for different stress-prone growing regions [J].
Annicchiarico, Paolo ;
Nazzicari, Nelson ;
Bouizgaren, Abdelaziz ;
Hayek, Taoufik ;
Laouar, Meriem ;
Cornacchione, Monica ;
Basigalup, Daniel ;
Martin, Cristina Monterrubio ;
Brummer, Edward Charles ;
Pecetti, Luciano .
PLANT GENOME, 2022, 15 (04)
[7]   Accuracy of genomic selection for alfalfa biomass yield in different reference populations [J].
Annicchiarico, Paolo ;
Nazzicari, Nelson ;
Li, Xuehui ;
Wei, Yanling ;
Pecetti, Luciano ;
Brummer, E. Charles .
BMC GENOMICS, 2015, 16
[8]   Questions and Avenues for Lucerne Improvement [J].
Annicchiarico, Paolo ;
Scotti, Carla ;
Carelli, Maria ;
Pecetti, Luciano .
CZECH JOURNAL OF GENETICS AND PLANT BREEDING, 2010, 46 (01) :1-13
[9]   Comparing genomic selection and marker-assisted selection for Fusarium head blight resistance in wheat (Triticum aestivum L.) [J].
Arruda, M. P. ;
Lipka, A. E. ;
Brown, P. J. ;
Krill, A. M. ;
Thurber, C. ;
Brown-Guedira, G. ;
Dong, Y. ;
Foresman, B. J. ;
Kolb, F. L. .
MOLECULAR BREEDING, 2016, 36 (07)
[10]   Accuracy and Training Population Design for Genomic Selection on Quantitative Traits in Elite North American Oats [J].
Asoro, Franco G. ;
Newell, Mark A. ;
Beavis, William D. ;
Scott, M. Paul ;
Jannink, Jean-Luc .
PLANT GENOME, 2011, 4 (02) :132-144