A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries

被引:59
作者
Duan, Tong [1 ,2 ,3 ]
Cheng, Hongwei [1 ,2 ,3 ]
Liu, Yanbo [1 ,2 ,3 ]
Sun, Qiangchao [1 ,2 ,3 ]
Nie, Wei [1 ,2 ,3 ]
Lu, Xionggang [1 ,2 ,3 ]
Dong, Panpan [4 ]
Song, Min-Kyu [4 ]
机构
[1] Shanghai Univ, State Key Lab Adv Special Steel, Shanghai Key Lab Adv Ferrometallurgy, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Shanghai Key Lab Adv Ferrometallurgy, Shanghai 200444, Peoples R China
[3] Shanghai Univ, PR China Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[4] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
关键词
Composite solid electrolyte; LLZTO filler; MEMO Janus layer; Interfacial compatibility; All -solid-state lithium metal batteries; POLYMER ELECTROLYTES; IONIC-CONDUCTIVITY; CHEMISTRY; TRANSPORT; FILLERS;
D O I
10.1016/j.ensm.2023.103091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible composite solid electrolytes (CSEs) show great potential in high-energy all-solid-state lithium metal batteries owing to their easy fabrication, good electrochemical properties, and high safety. However, it remains challenging to achieve good interfacial compatibility between inorganic fillers and polymer, which affects lithium-ion transport and electrochemical performances of CSEs. Herein, we design a Li6.4La3Zr1.4Ta0.6O12 (LLZTO) filler coated with 3-methacryloxypropyltrimethoxysilane (MEMO) Janus layer for poly(ethylene) oxide (PEO) electrolyte (denoted as MEMO@LLZTO-PEO). We demonstrate the effect of MEMO coating on ionic transport of CSEs by the combined experimental and theoretical methods. The MEMO Janus layer facilitates uniform dispersion of filler in polymer as well as dissociates more lithium salt, which leads to much improved ionic conductivity of MEMO@LLZTO-PEO (2.16 x 10(-4) S cm(-1) at 30 degree celsius). Besides, MEMO@LLZTO could immobilize lithium salt anions via hydrogen bonding interactions and F-O chemical bonding, leading to good lithium-ion transference number (0.53) of MEMO@LLZTO-PEO. Moreover, we prepare a nonwoven fabric (NF)-supported CSE (denoted as MEMO@LLZTO-PEO-NF) to further improve the mechanical strength and safety of CSEs. The MEMO@LLZTO-PEO-NF shows great cyclability over 4000 h in a lithium symmetrical cell at a current density of 0.1 mA cm(-2) (areal capacity: 0.1 mAh cm(-2), 60 degree celsius). When used in all-solid-state Li/LiFePO4 batteries with a high active mass loading (>4 mg cm(-2)), MEMO@LLZTO-PEO-NF cell shows much-enhanced cyclability and rate capability at 60 degree celsius. This work also provides a new strategy to achieve good interfacial compatibility between inorganic fillers and polymer matrix in composite solid electrolytes for all-solid-state lithium batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] The Regulation of Solid Electrolyte Interphase on Composite Lithium Anodes in Solid-State Batteries
    Wang, Zi-You
    Zhao, Chen-Zi
    Yao, Nan
    Lu, Yang
    Xue, Zhou-Qing
    Huang, Xue-Yan
    Xu, Pan
    Huang, Wen-Ze
    Wang, Zi-Xuan
    Huang, Jia-Qi
    Zhang, Qiang
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2025, 64 (02)
  • [32] Composite Solid Electrolyte for Solid-State Lithium Batteries Workable at Room Temperature
    Sun, Yiyang
    Jin, Feng
    Li, Jing
    Liu, Baotong
    Chen, Xi
    Dong, Houcai
    Mao, Yayun
    Gu, Wei
    Xu, Jingjing
    Shen, Yanbin
    Wu, Xiaodong
    Chen, Liwei
    ACS APPLIED ENERGY MATERIALS, 2020, 3 (12): : 12127 - 12133
  • [33] A novel reinforced concrete-like composite solid-state electrolyte with enhanced performance for all-solid-state lithium batteries
    Ruan, Yanli
    Feng, Jinshuai
    Huang, Xiaoyu
    Cai, Haoyu
    Zheng, Haitao
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2024, 28 (08) : 2715 - 2726
  • [34] Solid composite electrolyte with a Cs doped fluorapatite-interfacial layer enabling dendrite-free anodes for solid-state lithium batteries
    Mao, Yuezhen
    Mi, Fanghui
    Wang, Tianyuan
    Sun, Chunwen
    CHEMICAL ENGINEERING JOURNAL, 2024, 496
  • [35] Flexible PVA/BMIMOTf/LLZTO composite electrolyte with liquid-comparable ionic conductivity for solid-state lithium metal battery
    Jeon, Hyesun
    Hoang, Hai Anh
    Kim, Dukjoon
    JOURNAL OF ENERGY CHEMISTRY, 2022, 74 : 128 - 139
  • [36] Fabrication and electrochemical behavior of flexible composite solid electrolyte for bipolar solid-state lithium batteries
    Song, Young-Woong
    Park, Sang-Jun
    Kim, Min-Young
    Kang, Byeong-Su
    Hong, Youngsun
    Kim, Woo Joong
    Han, Jong-Hun
    Lim, Jinsub
    Kim, Ho-Sung
    JOURNAL OF POWER SOURCES, 2022, 542
  • [37] Particles in composite polymer electrolyte for solid-state lithium batteries: A review
    Meng, Nan
    Zhu, Xiaogang
    Lian, Fang
    PARTICUOLOGY, 2022, 60 : 14 - 36
  • [38] An in-situ generated composite solid-state electrolyte towards high-voltage lithium metal batteries
    Wang, Qinglei
    Dong, Tiantian
    Zhou, Qian
    Cui, Zili
    Shangguan, Xuehui
    Lu, Chenglong
    Lv, Zhaolin
    Chen, Kai
    Huang, Lang
    Zhang, Huanrui
    Cui, Guanglei
    SCIENCE CHINA-CHEMISTRY, 2022, 65 (05) : 934 - 942
  • [39] A promising composite room temperature solid electrolyte via incorporating LLZTO into cross-linked ETPTA/PEO/SN matrix for all solid state lithium batteries
    Li, Bangxing
    Yi, Xianlin
    Xie, Zhenjun
    Wu, Fei
    Kang, Xing
    Kang, Shuai
    Hu, Xiaolin
    IONICS, 2024, 30 (04) : 2007 - 2017
  • [40] Mitigating Interfacial Instability in Polymer Electrolyte-Based Solid-State Lithium Metal Batteries with 4 V Cathodes
    Li, Zeyuan
    Zhang, Hanrui
    Sun, Xueliang
    Yang, Yuan
    ACS ENERGY LETTERS, 2020, 5 (10) : 3244 - 3253