A multifunctional Janus layer for LLZTO/PEO composite electrolyte with enhanced interfacial stability in solid-state lithium metal batteries

被引:58
|
作者
Duan, Tong [1 ,2 ,3 ]
Cheng, Hongwei [1 ,2 ,3 ]
Liu, Yanbo [1 ,2 ,3 ]
Sun, Qiangchao [1 ,2 ,3 ]
Nie, Wei [1 ,2 ,3 ]
Lu, Xionggang [1 ,2 ,3 ]
Dong, Panpan [4 ]
Song, Min-Kyu [4 ]
机构
[1] Shanghai Univ, State Key Lab Adv Special Steel, Shanghai Key Lab Adv Ferrometallurgy, Shanghai 200444, Peoples R China
[2] Shanghai Univ, Shanghai Key Lab Adv Ferrometallurgy, Shanghai 200444, Peoples R China
[3] Shanghai Univ, PR China Univ, Sch Mat Sci & Engn, Shanghai 200444, Peoples R China
[4] Washington State Univ, Sch Mech & Mat Engn, Pullman, WA 99164 USA
关键词
Composite solid electrolyte; LLZTO filler; MEMO Janus layer; Interfacial compatibility; All -solid-state lithium metal batteries; POLYMER ELECTROLYTES; IONIC-CONDUCTIVITY; CHEMISTRY; TRANSPORT; FILLERS;
D O I
10.1016/j.ensm.2023.103091
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Flexible composite solid electrolytes (CSEs) show great potential in high-energy all-solid-state lithium metal batteries owing to their easy fabrication, good electrochemical properties, and high safety. However, it remains challenging to achieve good interfacial compatibility between inorganic fillers and polymer, which affects lithium-ion transport and electrochemical performances of CSEs. Herein, we design a Li6.4La3Zr1.4Ta0.6O12 (LLZTO) filler coated with 3-methacryloxypropyltrimethoxysilane (MEMO) Janus layer for poly(ethylene) oxide (PEO) electrolyte (denoted as MEMO@LLZTO-PEO). We demonstrate the effect of MEMO coating on ionic transport of CSEs by the combined experimental and theoretical methods. The MEMO Janus layer facilitates uniform dispersion of filler in polymer as well as dissociates more lithium salt, which leads to much improved ionic conductivity of MEMO@LLZTO-PEO (2.16 x 10(-4) S cm(-1) at 30 degree celsius). Besides, MEMO@LLZTO could immobilize lithium salt anions via hydrogen bonding interactions and F-O chemical bonding, leading to good lithium-ion transference number (0.53) of MEMO@LLZTO-PEO. Moreover, we prepare a nonwoven fabric (NF)-supported CSE (denoted as MEMO@LLZTO-PEO-NF) to further improve the mechanical strength and safety of CSEs. The MEMO@LLZTO-PEO-NF shows great cyclability over 4000 h in a lithium symmetrical cell at a current density of 0.1 mA cm(-2) (areal capacity: 0.1 mAh cm(-2), 60 degree celsius). When used in all-solid-state Li/LiFePO4 batteries with a high active mass loading (>4 mg cm(-2)), MEMO@LLZTO-PEO-NF cell shows much-enhanced cyclability and rate capability at 60 degree celsius. This work also provides a new strategy to achieve good interfacial compatibility between inorganic fillers and polymer matrix in composite solid electrolytes for all-solid-state lithium batteries.
引用
收藏
页数:10
相关论文
共 50 条
  • [21] Organic-Organic Composite Electrolyte Enables Ultralong Cycle Life in Solid-State Lithium Metal Batteries
    Xue, Chuanjiao
    Zhang, Xue
    Wang, Shuo
    Li, Liangliang
    Nan, Ce-Wen
    ACS APPLIED MATERIALS & INTERFACES, 2020, 12 (22) : 24837 - 24844
  • [22] A multi-affinity supramolecular nanolayer reinforced PVDF-LLZTO composite polymer electrolyte for stable solid-state lithium batteries
    Liu, Changfei
    Wang, Sailong
    Lu, Zhengyi
    Zhao, Jiaqing
    Wu, Yuchen
    Ren, Chaojie
    Yang, Ruizhi
    Jin, Chao
    NANO RESEARCH, 2025, 18 (02)
  • [23] Boron nitride nanofibers enhanced composite PEO-based solid-state polymer electrolytes for lithium metal batteries
    Song, Qianqian
    Zhang, Yunting
    Liang, Jianli
    Liu, Si
    Zhu, Jian
    Yan, Xingbin
    CHINESE CHEMICAL LETTERS, 2024, 35 (06)
  • [24] Enhancing Interfacial Contact in Solid-State Batteries with a Gradient Composite Solid Electrolyte
    Deng, Chenglong
    Chen, Nan
    Hou, Chuanyu
    Liu, Hanxiao
    Zhou, Zhiming
    Chen, Renjie
    SMALL, 2021, 17 (18)
  • [25] A Flexible Ceramic/Polymer Hybrid Solid Electrolyte for Solid-State Lithium Metal Batteries
    Pan, Kecheng
    Zhang, Lan
    Qian, Weiwei
    Wu, Xiangkun
    Dong, Kun
    Zhang, Haitao
    Zhang, Suojiang
    ADVANCED MATERIALS, 2020, 32 (17)
  • [26] Filler-Integrated Composite Polymer Electrolyte for Solid-State Lithium Batteries
    Liu, Shuailei
    Liu, Wenyi
    Ba, Deliang
    Zhao, Yongzhi
    Ye, Yihua
    Li, Yuanyuan
    Liu, Jinping
    ADVANCED MATERIALS, 2023, 35 (02)
  • [27] Solid-State Electrolytes and Their Interfacial Properties: Implications for Solid-State Lithium Batteries
    Lee, Seul-Yi
    Rawal, Jishu
    Lee, Jieun
    Gautam, Jagadis
    Kim, Seok
    Xu, Gui-Liang
    Amine, Khalil
    Park, Soo-Jin
    ELECTROCHEMICAL ENERGY REVIEWS, 2025, 8 (01)
  • [28] Softening of PEO-LiTFSI/LLZTO Composite Polymer Electrolytes for Solid-State Batteries under Cyclic Compression
    Yoon, Dan-il
    Mulay, Nishad
    Baltazar, Jericko
    Cao, Dang Khoa
    Perez, Valeria
    Weker, Johanna Nelson
    Lee, Min Hwan
    Miller, Robert D.
    Oh, Dahyun
    Lee, Sang-Joon John
    ACS APPLIED ENERGY MATERIALS, 2023, 6 (18) : 9400 - 9408
  • [29] Macromolecular Design of Lithium Conductive Polymer as Electrolyte for Solid-State Lithium Batteries
    Meng, Nan
    Lian, Fang
    Cui, Guanglei
    SMALL, 2021, 17 (03)
  • [30] High-safety composite solid electrolyte based on inorganic matrix for solid-state lithium-metal batteries
    Hu, Qilin
    Sun, Zhetao
    Nie, Lu
    Chen, Shaojie
    Yu, Jiameng
    Liu, Wei
    MATERIALS TODAY ENERGY, 2022, 27