Diverse plant promoting bacterial species differentially improve tomato plant fitness under water stress

被引:3
|
作者
Zampieri, Elisa [1 ]
Franchi, Elisabetta [2 ]
Giovannini, Luca [1 ]
Brescia, Francesca [1 ]
Sillo, Fabiano [1 ]
Fusini, Danilo [2 ]
Pietrini, Ilaria [2 ]
Centritto, Mauro [1 ]
Balestrini, Raffaella [1 ]
机构
[1] Natl Res Council Italy, Inst Sustainable Plant Protect, Turin, Italy
[2] Eni SpA, R&D Environm & Biol Labs, San Donato Milanese, Italy
来源
关键词
Solanum lycopersicum; abiotic stress; PGPB; 16S; in vitro characterization; gene expression; RHIZOBACTERIA PGPR; DROUGHT TOLERANCE; ACC DEAMINASE; GROWTH; GENE; EXPRESSION; IDENTIFICATION; RESISTANCE; EMISSION; SALINITY;
D O I
10.3389/fpls.2023.1297090
中图分类号
Q94 [植物学];
学科分类号
071001 ;
摘要
Introduction Food crops are increasingly susceptible to the challenging impacts of climate change, encompassing both abiotic and biotic stresses, that cause yield losses. Root-associated microorganisms, including plant growth-promoting bacteria (PGPB), can improve plant growth as well as plant tolerance to environmental stresses. The aims of this work were to characterize bacteria isolated from soil and roots of tomato plants grown in open field.Methods Biochemical and molecular analyses were used to evaluate the PGP potential of the considered strains on tomato plants in controlled conditions, also assessing their effects under a water deficit condition. The isolated strains were classified by 16S gene sequencing and exhibited typical features of PGPB, such as the release of siderophores, the production of proteases, and phosphorous solubilization. Inoculating tomato plants with eleven selected strains led to the identification of potentially interesting strains that increased shoot height and dry weight. Three strains were then selected for the experiment under water deficit in controlled conditions. The tomato plants were monitored from biometric and physiological point of view, and the effect of inoculation at molecular level was verified with a targeted RT-qPCR based approach on genes that play a role under water deficit condition.Results Results revealed the PGP potential of different bacterial isolates in tomato plants, both in well-watered and stressed conditions. The used integrated approach allowed to obtain a broader picture of the plant status, from biometric, eco-physiological and molecular point of view. Gene expression analysis showed a different regulation of genes involved in pathways related to abscisic acid, osmoprotectant compounds and heat shock proteins, depending on the treatments.Discussion Overall, results showed significant changes in tomato plants due to the bacterial inoculation, also under water deficit, that hold promise for future field applications of these bacterial strains, suggesting that a synergistic and complementary interaction between diverse PGPB is an important point to be considered for their exploitation.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Interaction of plant growth promoting bacteria with tomato under abiotic stress: A review
    Singh, Vipin Kumar
    Singh, Amit Kishore
    Singh, Prem Pratap
    Kumar, Ajay
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2018, 267 : 129 - 140
  • [2] Native Halotolerant Plant Growth Promoting Bacterial Strains can Ameliorate Salinity Stress on Tomato Plants under Field Conditions
    Aslam, Hina
    Ahmad, Sajid Rashid
    Anjum, Tehmina
    Akram, Waheed
    INTERNATIONAL JOURNAL OF AGRICULTURE AND BIOLOGY, 2018, 20 (02) : 315 - 322
  • [3] Physiological and Genetic Modifications Induced by Plant-Growth-Promoting Rhizobacteria (PGPR) in Tomato Plants under Moderate Water Stress
    Lucas, Jose Antonio
    Garcia-Villaraco, Ana
    Montero-Palmero, Maria Belen
    Montalban, Blanca
    Ramos Solano, Beatriz
    Gutierrez-Manero, Francisco Javier
    BIOLOGY-BASEL, 2023, 12 (07):
  • [4] Plant growth-promoting bacteria delayed wilting and improved tomato yield when grown under water stress condition
    Taiwo, Michael Oluwambe
    Akintokun, Aderonke Kofoworola
    JOURNAL OF PLANT NUTRITION, 2025,
  • [5] Starch as a determinant of plant fitness under abiotic stress
    Thalmann, Matthias
    Santelia, Diana
    NEW PHYTOLOGIST, 2017, 214 (03) : 943 - 951
  • [6] Isolation and characterization of a new Leptobacillium species promoting tomato plant growth
    Liu-Xu, Luisa
    Vicedo, Begonya
    Papadopoulou, Kalliope K.
    Camanes, Gemma
    Llorens, Eugenio
    SCIENTIFIC REPORTS, 2025, 15 (01):
  • [7] Does a foliar endophyte improve plant fitness under flooding?
    Adams, Amy E.
    Kazenel, Melanie R.
    Rudgers, Jennifer A.
    PLANT ECOLOGY, 2017, 218 (06) : 711 - 723
  • [8] Does a foliar endophyte improve plant fitness under flooding?
    Amy E. Adams
    Melanie R. Kazenel
    Jennifer A. Rudgers
    Plant Ecology, 2017, 218 : 711 - 723
  • [9] Chromium Reducing and Plant Growth Promoting Potential of Mesorhizobium Species under Chromium Stress
    Wani, Pervaze Ahmad
    Zaidi, Almas
    Khan, Md. Saghir
    BIOREMEDIATION JOURNAL, 2009, 13 (03) : 121 - 129
  • [10] Occupancy of diverse bacterial species in mungbean nodules functioning as plant biostimulants under saline conditions
    Zahra, Syeda Tahseen
    Tariq, Mohsin
    Yasmeen, Tahira
    Imran, Asma
    Asghar, Muhammad Jawad
    Zahid, Tayyaba
    Ahmed, Temoor
    SOUTH AFRICAN JOURNAL OF BOTANY, 2025, 180 : 461 - 472