High Voltage Ga-Doped P2-Type Na2/3Ni0.2Mn0.8O2 Cathode for Sodium-Ion Batteries

被引:7
|
作者
Liu, Huanqing [1 ]
Hong, Ningyun [2 ]
Bugday, Nesrin [3 ]
Yasar, Sedat [3 ]
Altin, Serdar [3 ]
Deng, Weina [4 ]
Deng, Wentao [1 ]
Zou, Guoqiang [1 ]
Hou, Hongshuai [1 ]
Long, Zhen [2 ]
Ji, Xiaobo [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[2] Tianjin Univ Technol, Inst Funct Crystal, Coll Mat Sci & Engn, Tianjin Key Lab Funct Crystal Mat, Tianjin 300384, Peoples R China
[3] Inonu Inonu Univ, Dept Chem, TR-44280 Malatya, Turkiye
[4] Changsha Univ, Hunan Key Lab Appl Environm Photocatalysis, Changsha 410022, Peoples R China
基金
中国国家自然科学基金;
关键词
Ga-doped; high-voltage cathodes; layered oxide cathodes; phase transition; sodium-ion batteries; SUBSTITUTION; PERFORMANCE; REDOX; CU;
D O I
10.1002/smll.202307225
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ni/Mn-based oxide cathode materials have drawn great attention due to their high discharge voltage and large capacity, but structural instability at high potential causes rapid capacity decay. How to moderate the capacity loss while maintaining the advantages of high discharge voltage remains challenging. Herein, the replacement of Mn ions by Ga ions is proposed in the P2-Na2/3Ni0.2Mn0.8O2 cathode for improving their cycling performances without sacrificing the high discharge voltage. With the introduction of Ga ions, the relative movement between the transition metal ions is restricted and more Na ions are retained in the lattice at high voltage, leading to an enhanced redox activity of Ni ions, validated by ex situ synchrotron X-ray absorption spectrum and X-ray photoelectron spectroscopy. Additionally, the P2-O2 phase transition is replaced by a P2-OP4 phase transition with a smaller volume change, reducing the lattice strain in the c-axis direction, as detected by operando/ex situ X-ray diffraction. Consequently, the Na2/3Ni0.21Mn0.74Ga0.05O2 electrode exhibits a high discharge voltage close to that of the undoped materials, while increasing voltage retention from 79% to 93% after 50 cycles. This work offers a new avenue for designing high-energy density Ni/Mn-based oxide cathodes for sodium-ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [31] P2-Type Na0.67Ni0.23Fe0.1Mn0.67O2 Cathode Material with Suppressed P2-O2 Phase Transition for Sodium-Ion Batteries
    Xie, Liang
    Lu, Weiqin
    Li, Lanyan
    Li, Mingzhou
    Wang, Xianyou
    Luo, Zhigao
    CHEMISTRYSELECT, 2024, 9 (32):
  • [32] Excellent cyclability of P2-type Na-Co-Mn-Si-O cathode material for high-rate sodium-ion batteries
    Wang, Lijun
    Wang, Yanzhi
    Yang, Xiaheng
    Wang, Jinlong
    Yang, Xiduo
    Tang, Jiantao
    JOURNAL OF MATERIALS SCIENCE, 2019, 54 (19) : 12723 - 12736
  • [33] A P2-Type Layered Superionic Conductor Ga-Doped Na2Zn2TeO6 for All-Solid-State Sodium-Ion Batteries
    Li, Yuyu
    Deng, Zhi
    Peng, Jian
    Chen, Enyi
    Yu, Yao
    Li, Xiang
    Luo, Jiahuan
    Huang, Yangyang
    Zhu, Jinlong
    Fang, Chun
    Li, Qing
    Han, Jiantao
    Huang, Yunhui
    CHEMISTRY-A EUROPEAN JOURNAL, 2018, 24 (05) : 1057 - 1061
  • [34] Zinc-substituted P2-type Na0.67Ni0.23Zn0.1Mn0.67O2 cathode with improved rate capability and cyclic stability for sodium-ion storage at high voltage
    Zhang, Xinyu
    Chen, Hongxia
    Xu, Shuangwu
    Zhou, Mengcheng
    Nie, Rihuang
    Yang, Yutian
    Li, Cheng
    Zhou, Hongming
    JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 968
  • [35] P2-type Na2/3Mn1/2Co1/3Cu1/6O2 as advanced cathode material for sodium-ion batteries: Electrochemical properties and electrode kinetics
    Pang, Wei-Lin
    Guo, Jin-Zhi
    Zhang, Xiao-Hua
    Fan, Chao-Ying
    Nie, Xue-Jiao
    Yu, Hai-Yue
    Li, Wen-Hao
    Yang, Qiong
    Wu, Xing-Long
    JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 790 : 1092 - 1100
  • [36] Evaluation of O3-type Na0.8Ni0.6Sb0.4O2 as cathode materials for sodium-ion batteries
    Han, Jin
    Niu, Yubin
    Zhang, Yan
    Jiang, Jian
    Bao, Shu-juan
    Xu, Maowen
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2016, 20 (08) : 2331 - 2335
  • [37] Stabilizing P2-Type Ni-Mn Oxides as High-Voltage Cathodes by a Doping-Integrated Coating Strategy Based on Zinc for Sodium-Ion Batteries
    Zhang, Fengping
    Liao, Jihui
    Xu, Lin
    Wu, Wenwei
    Wu, Xuehang
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (34) : 40695 - 40704
  • [38] Stable Electrochemical Properties of Titanium Doped Layered P2-type Na0.67Ni0.15 Mn0.85O2 Cathode Material for Sodium Ion Batteries
    Han, Huawei
    Guo, Shihong
    Chen, Yimeng
    Guo, Shuai
    Hong, Ningyun
    Fan, Jiangtao
    Long, Zhen
    Qiu, Xiaoqing
    JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2022, 169 (08)
  • [39] Suppressed the High-Voltage Phase Transition of P2-Type Oxide Cathode for High-Performance Sodium-Ion Batteries
    Jiang, Kezhu
    Zhang, Xueping
    Li, Haoyu
    Zhang, Xiaoyu
    He, Ping
    Guo, Shaohua
    Zhou, Haoshen
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (16) : 14848 - 14853
  • [40] P2-type Na2/3Ni1/3Mn2/3O2 as a cathode material with high-rate and long-life for sodium ion storage
    Liu, Qiannan
    Hu, Zhe
    Chen, Mingzhe
    Zou, Chao
    Jin, Huile
    Wang, Shun
    Gu, Qinfen
    Chou, Shulei
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (15) : 9215 - 9221