High Voltage Ga-Doped P2-Type Na2/3Ni0.2Mn0.8O2 Cathode for Sodium-Ion Batteries

被引:7
|
作者
Liu, Huanqing [1 ]
Hong, Ningyun [2 ]
Bugday, Nesrin [3 ]
Yasar, Sedat [3 ]
Altin, Serdar [3 ]
Deng, Weina [4 ]
Deng, Wentao [1 ]
Zou, Guoqiang [1 ]
Hou, Hongshuai [1 ]
Long, Zhen [2 ]
Ji, Xiaobo [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Changsha 410083, Peoples R China
[2] Tianjin Univ Technol, Inst Funct Crystal, Coll Mat Sci & Engn, Tianjin Key Lab Funct Crystal Mat, Tianjin 300384, Peoples R China
[3] Inonu Inonu Univ, Dept Chem, TR-44280 Malatya, Turkiye
[4] Changsha Univ, Hunan Key Lab Appl Environm Photocatalysis, Changsha 410022, Peoples R China
基金
中国国家自然科学基金;
关键词
Ga-doped; high-voltage cathodes; layered oxide cathodes; phase transition; sodium-ion batteries; SUBSTITUTION; PERFORMANCE; REDOX; CU;
D O I
10.1002/smll.202307225
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Ni/Mn-based oxide cathode materials have drawn great attention due to their high discharge voltage and large capacity, but structural instability at high potential causes rapid capacity decay. How to moderate the capacity loss while maintaining the advantages of high discharge voltage remains challenging. Herein, the replacement of Mn ions by Ga ions is proposed in the P2-Na2/3Ni0.2Mn0.8O2 cathode for improving their cycling performances without sacrificing the high discharge voltage. With the introduction of Ga ions, the relative movement between the transition metal ions is restricted and more Na ions are retained in the lattice at high voltage, leading to an enhanced redox activity of Ni ions, validated by ex situ synchrotron X-ray absorption spectrum and X-ray photoelectron spectroscopy. Additionally, the P2-O2 phase transition is replaced by a P2-OP4 phase transition with a smaller volume change, reducing the lattice strain in the c-axis direction, as detected by operando/ex situ X-ray diffraction. Consequently, the Na2/3Ni0.21Mn0.74Ga0.05O2 electrode exhibits a high discharge voltage close to that of the undoped materials, while increasing voltage retention from 79% to 93% after 50 cycles. This work offers a new avenue for designing high-energy density Ni/Mn-based oxide cathodes for sodium-ion batteries.
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Na vacancies and Li doping synergistically constructed P2-type Na0.5Li0.1Ni0.2Mn0.7O2 as high-performance cathode material for sodium-ion batteries
    Zhang, Bo
    Xu, Shoudong
    Lu, Zhonghua
    Zhang, Zhitao
    Chen, Liang
    Zhang, Ding
    MATERIALS LETTERS, 2023, 350
  • [22] Optimized synthesis of Na2/3Ni1/3Mn2/3O2 as cathode for sodium-ion batteries by rapid microwave calcination
    Bomio, M. R. D.
    Lavela, P.
    Santiago, A. A. G.
    Motta, F. V.
    Tirado, J. L.
    CERAMICS INTERNATIONAL, 2023, 49 (08) : 12452 - 12461
  • [23] A P2-type Na0.7(Ni0.6Co0.2Mn0.2)O2 cathode with excellent cyclability and rate capability for sodium ion batteries
    Choi, Jonghyun
    Kim, Kyeong-Ho
    Jung, Chul-Ho
    Hong, Seong-Hyeon
    CHEMICAL COMMUNICATIONS, 2019, 55 (77) : 11575 - 11578
  • [24] Cu-doped layered P2-type Na0.67Ni0.33-xCuxMn0.67O2 cathode electrode material with enhanced electrochemical performance for sodium-ion batteries
    Yang, Liu
    Luo, Shao-hua
    Wang, Yafeng
    Zhan, Yang
    Wang, Qing
    Zhang, Yahui
    Liu, Xin
    Mu, Wenning
    Teng, Fei
    CHEMICAL ENGINEERING JOURNAL, 2021, 404
  • [25] Comprehensive Review of P2-Type Na2/3Ni1/3Mn2/3O2, a Potential Cathode for Practical Application of Na-Ion Batteries
    Zhang, Jiaolong
    Wang, Wenhui
    Wang, Wei
    Wang, Shuwei
    Li, Baohua
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (25) : 22051 - 22066
  • [26] Investigation of K modified P2 Na0.7Mn0.8Mg0.2O2 as a cathode material for sodium-ion batteries
    Sehrawat, Divya
    Cheong, Soshan
    Rawal, Aditya
    Glushenkov, Alexey M.
    Brand, Helen E. A.
    Cowie, Bruce
    Gonzalo, Elena
    Rojo, Teofilo
    Naeyaert, Pierre J. P.
    Ling, Chris D.
    Avdeev, Maxim
    Sharma, Neeraj
    CRYSTENGCOMM, 2019, 21 (01) : 172 - 181
  • [27] Facile synthesis of P2-type Na0.4Mn0.54Co0.46O2 as a high capacity cathode material for sodium-ion batteries
    Xu, Xijun
    Ji, Shaomin
    Gao, Ruibo
    Liu, Jun
    RSC ADVANCES, 2015, 5 (63): : 51454 - 51460
  • [28] P2-type Na0.59Co0.20Mn0.77Mo0.03O2 cathode with excellent cycle stability for sodium-ion batteries
    Zhao, Jiabin
    Zhang, Xin
    Wang, Jinlong
    Yang, Xiaheng
    Deng, Jiaying
    Wang, Yanzhi
    JOURNAL OF SOLID STATE ELECTROCHEMISTRY, 2020, 24 (06) : 1349 - 1361
  • [29] The Magnesium Insertion Effects into P2-Type Na2/3Ni1/3Mn2/3O2
    Perez-Vicente, Carlos
    Ariza, Rafaela
    Zuo, Wenhua
    Yang, Yong
    Ortiz, Gregorio F.
    SMALL, 2024, 20 (08)
  • [30] Sodium superionic conductor NaTi2(PO4)3 surface layer modified P2-type Na2/3Ni1/3Mn2/3O2 as high-performance cathode for sodium-ion batteries
    Li, Haiming
    Wang, Tailin
    Wang, Xue
    Li, Guangda
    Du, Yi
    Shen, Jianxing
    Chai, Jinling
    JOURNAL OF POWER SOURCES, 2021, 494