Space Mapping Technique on Microwave Filter Circuit Model Using Artificial Neural Network for Parameter Extraction

被引:0
作者
Oluyemi, Olufemi [1 ]
Laforge, Paul [1 ]
Bais, Abdul [1 ]
机构
[1] Univ Regina, Elect Syst Engn, Regina, SK, Canada
来源
2023 IEEE CANADIAN CONFERENCE ON ELECTRICAL AND COMPUTER ENGINEERING, CCECE | 2023年
关键词
artificial neural network; machine learning; microwave filter; parameter extraction; space mapping; OPTIMIZATION;
D O I
10.1109/CCECE58730.2023.10288716
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This research introduces an innovative approach to microwave filter design, utilizing an artificial neural network-based model that learns the relationship between geometric parameters and the microwave filter's response. In particular, the proposed model is applied to the design of a 3-pole Chebyshev capacitively lossless bandpass microwave filter. Two examples with different center frequencies and percentage bandwidths are considered to validate the model's effectiveness. Distinct datasets are generated for each center frequency and percentage bandwidth to ensure accuracy. The trained ANN models are used for parameter extraction at each aggressive space mapping iteration, offering a fast and accurate solution for microwave filter design. This approach provides a simple yet promising alternative to traditional design methods.
引用
收藏
页数:5
相关论文
共 50 条
  • [31] An artificial neural network approach to identify the parameter in a nonlinear subdiffusion model
    Oulmelk, A.
    Srati, M.
    Afraites, L.
    Hadri, A.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 125
  • [32] Analog Fault Identification in RF Circuits using Artificial Neural Networks and Constrained Parameter Extraction
    Viveros-Wacher, Andres
    Rayas-Sanchez, Jose E.
    2018 IEEE MTT-S INTERNATIONAL CONFERENCE ON NUMERICAL ELECTROMAGNETIC AND MULTIPHYSICS MODELING AND OPTIMIZATION (NEMO), 2018,
  • [33] Target parameter extraction based on neural network and scattering center model
    Luo Y.
    Chen Y.
    Guo K.
    Sheng X.
    Ma J.
    Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics, 2023, 45 (01): : 9 - 14
  • [34] Liquefaction susceptibility mapping using artificial neural network for offshore wind farms in Taiwan
    Liu, Chih-Yu
    Ku, Cheng-Yu
    Wu, Ting-Yuan
    Chiu, Yu-Jia
    Chang, Cheng-Wei
    ENGINEERING GEOLOGY, 2025, 351
  • [35] Dynamic Modelling of Supercapacitor Using Artificial Neural Network Technique
    Danila, Elena
    Livint, Gheorghe
    Lucache, Dorin Dumitru
    2014 INTERNATIONAL CONFERENCE AND EXPOSITION ON ELECTRICAL AND POWER ENGINEERING (EPE), 2014, : 642 - 645
  • [36] Intelligent Model for Avoiding Road Accidents Using Artificial Neural Network
    Kushwaha, Manoj
    Abirami, M. S.
    INTERNATIONAL JOURNAL OF COMPUTERS COMMUNICATIONS & CONTROL, 2023, 18 (05)
  • [37] Prediction of electronic structure in atomistic model using artificial neural network
    Umeno, Y.
    Kubo, A.
    COMPUTATIONAL MATERIALS SCIENCE, 2019, 168 : 164 - 171
  • [38] Face Recognition Using Nonlinear Feature Parameter and Artificial Neural Network
    Narayanan N.K.
    Kabeer V.
    International Journal of Computational Intelligence Systems, 2010, 3 (5) : 566 - 574
  • [39] Face Recognition Using Nonlinear Feature Parameter and Artificial Neural Network
    Narayanan, N. K.
    Kabeer, V.
    INTERNATIONAL JOURNAL OF COMPUTATIONAL INTELLIGENCE SYSTEMS, 2010, 3 (05) : 566 - 574
  • [40] A THz Waveguide Bandpass Filter Design Using an Artificial Neural Network
    Lin, Chu-Hsuan
    Cheng, Yu-Hsiang
    MICROMACHINES, 2022, 13 (06)