Overcoming hydrogen loss in single-chamber microbial electrolysis cells by urine amendment

被引:4
作者
Wang, Bing [1 ]
Liu, Yiwen [1 ]
Wang, Xin [2 ]
Sun, Peizhe [1 ]
机构
[1] Tianjin Univ, Sch Environm Sci & Engn, Tianjin 300072, Peoples R China
[2] Nankai Univ, Coll Environm Sci & Engn, MOE Key Lab Pollut Proc & Environm Criteria, Tianjin Key Lab Environm Remediat & Pollut Control, Tianjin 300350, Peoples R China
关键词
Microbial electrolysis cell; Hydrogen loss; Methanogenesis; H; 2-reoxidation; TAN; Source separated urine; METHANOGENESIS; INHIBITION; CONSUMPTION; RECOVERY; BIOFILM; FLOW;
D O I
10.1016/j.watres.2023.120755
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The effective hydrogen production in single-chamber microbial electrolysis cells (MECs) has been seriously challenged by various hydrogen consumers resulting in substantial hydrogen loss. In previous studies, the total ammonia nitrogen (TAN) has been used to inhibit certain hydrogen-consuming microorganisms to enhance hydrogen production in fermentation. In this study, we explored the feasibility of using source-separated urine to overcome hydrogen loss in the MEC, with the primary component responsible being TAN generated via urea hydrolysis. Experimental results revealed that the optimal TAN concentration ranged from 1.17 g N/L to 1.75 g N/L. Within this range, the hydrogen production rate substantially improved from less than 100 L/(m3 center dot d) up to 520 L/(m3 center dot d), and cathode recovery efficiency and energy recovery efficiency were greatly enhanced, with the hydrogen percentage achieved over 95 % of the total gas volume, while maintaining uninterrupted electroactivity in the anode. Compared to using chemically added TAN, using source separated urine as the source of ammonia also showed the effect of overcoming hydrogen loss but with lower Coulombic efficiency due to the complex organic components. Pre-adaptation of the reactor with urea enhanced hydrogen production by nearly 60 %. This study demonstrated the effectiveness of TAN and urine in suppressing hydrogen loss, and the results are highly relevant to MECs treating real wastewater with high TAN concentrations, particularly human fecal and urine wastewater.
引用
收藏
页数:9
相关论文
共 41 条
[1]  
BRAUN R, 1981, BIOTECHNOL LETT, V3, P159
[2]   Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane [J].
Call, Douglas ;
Logan, Bruce E. .
ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2008, 42 (09) :3401-3406
[3]   Suppression of methanogenesis for hydrogen production in single chamber microbial electrolysis cells using various antibiotics [J].
Catal, Tunc ;
Lesnik, Keaton Larson ;
Liu, Hong .
BIORESOURCE TECHNOLOGY, 2015, 187 :77-83
[4]   Inhibition of anaerobic digestion process: A review [J].
Chen, Ye ;
Cheng, Jay J. ;
Creamer, Kurt S. .
BIORESOURCE TECHNOLOGY, 2008, 99 (10) :4044-4064
[5]  
Cheng S, 2007, P NATL ACAD SCI USA, V104, P18871, DOI 10.1073/pnas.0706379104
[6]   Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells [J].
Cheng, Shaoan ;
Logan, Bruce E. .
ELECTROCHEMISTRY COMMUNICATIONS, 2007, 9 (03) :492-496
[7]   Effects of biofouling on ion transport through cation exchange membranes and microbial fuel cell performance [J].
Choi, Mi-Jin ;
Chae, Kyu-Jung ;
Ajayi, Folusho F. ;
Kim, Kyoung-Yeol ;
Yu, Hye-Weon ;
Kim, Chang-won ;
Kim, In S. .
BIORESOURCE TECHNOLOGY, 2011, 102 (01) :298-303
[8]   Methanogenesis in membraneless microbial electrolysis cells [J].
Clauwaert, Peter ;
Verstraete, Willy .
APPLIED MICROBIOLOGY AND BIOTECHNOLOGY, 2009, 82 (05) :829-836
[9]   Bio-electrochemical COD removal for energy-efficient, maximum and robust nitrogen recovery from urine through membrane aerated nitrification [J].
De Paepe, Jolien ;
De Paepe, Kim ;
Godia, Francesc ;
Rabaey, Korneel ;
Vlaeminck, Siegfried E. ;
Clauwaert, Peter .
WATER RESEARCH, 2020, 185
[10]   Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR) [J].
Ditzig, Jenna ;
Liu, Hong ;
Logan, Bruce E. .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2007, 32 (13) :2296-2304