Realization of photonic p-orbital higher-order topological insulators

被引:45
作者
Zhang, Yahui [1 ]
Bongiovanni, Domenico [1 ,2 ,3 ]
Wang, Ziteng [1 ]
Wang, Xiangdong [1 ]
Xia, Shiqi [1 ]
Hu, Zhichan [1 ]
Song, Daohong [1 ,4 ]
Jukic, Dario [5 ]
Xu, Jingjun [1 ]
Morandotti, Roberto [2 ,3 ]
Buljan, Hrvoje [1 ,6 ]
Chen, Zhigang [1 ,4 ]
机构
[1] Nankai Univ, Key Lab Weak Light Nonlinear Photon, TEDA Appl Phys Inst, MOE, Tianjin 300457, Peoples R China
[2] INRS EMT, 1650 Blvd Lionel Boulet, Varennes, PQ J3X 1S2, Canada
[3] Nankai Univ, Sch Phys, Tianjin 300457, Peoples R China
[4] Shanxi Univ, Collaborat Innovat Ctr Extreme Opt, Taiyuan 030006, Shanxi, Peoples R China
[5] Univ Zagreb, Fac Civil Engn, A Kacica Miosica 26, Zagreb 10000, Croatia
[6] Univ Zagreb, Fac Sci, Dept Phys, Bijenicka C 32, HR-10000 Zagreb, Croatia
来源
ELIGHT | 2023年 / 3卷 / 01期
基金
加拿大自然科学与工程研究理事会; 中国国家自然科学基金;
关键词
Higher-band topology; Orbital degrees of freedom; Generalized chiral symmetry; Bulk polarization; Winding number; Breathing Kagome lattice; STATES;
D O I
10.1186/s43593-022-00039-7
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials as well as exotic quantum states of matter including orbital superfluidity and topological semimetals. Despite tremendous efforts in engineering synthetic cold-atom, as well as electronic and photonic lattices to explore orbital physics, thus far high orbitals in an important class of materials, namely, higher-order topological insulators (HOTIs), have not been realized. Here, we demonstrate p-orbital corner states in a photonic HOTI, unveiling their underlying topological invariant, symmetry protection, and nonlinearity-induced dynamical rotation. In a Kagome-type HOTI, we find that the topological protection of p-orbital corner states demands an orbital-hopping symmetry in addition to generalized chiral symmetry. Due to orbital hybridization, nontrivial topology of the p-orbital HOTI is "hidden" if bulk polarization is used as the topological invariant, but well manifested by the generalized winding number. Our work opens a pathway for the exploration of intriguing orbital phenomena mediated by higher-band topology applicable to a broad spectrum of systems.
引用
收藏
页数:9
相关论文
共 50 条
  • [41] Higher-order topological superconductor on the bipartite triangular lattice
    Fedoseev, A. D.
    PHYSICAL REVIEW B, 2022, 105 (15)
  • [42] Network model for magnetic higher-order topological phases
    Liu, Hui
    Moghaddam, Ali G.
    Varjas, Daniel
    Fulga, Ion Cosma
    PHYSICAL REVIEW RESEARCH, 2024, 6 (04):
  • [43] Higher-Order Topological Phase of Interacting Photon Pairs
    Stepanenko, Andrei A.
    Lyubarov, Mark D.
    Gorlach, Maxim A.
    PHYSICAL REVIEW LETTERS, 2022, 128 (21)
  • [44] Pentagonal nanowires from topological crystalline insulators: a platform for intrinsic core-shell nanowires and higher-order topology
    Hussain, Ghulam
    Cuono, Giuseppe
    Dziawa, Piotr
    Janaszko, Dorota
    Sadowski, Janusz
    Kret, Slawomir
    Kurowska, Boguslawa
    Polaczynski, Jakub
    Warda, Kinga
    Sattar, Shahid
    Canali, Carlo M.
    Lau, Alexander
    Brzezicki, Wojciech
    Story, Tomasz
    Autieri, Carmine
    NANOSCALE HORIZONS, 2024, 9 (08) : 1290 - 1300
  • [45] Evolution of an Overlapped Bandgap and Topological Flat Bands in a Higher-Order Valley Photonic Insulator Based on Dendritic Structure
    Li, Meize
    Liu, Yahong
    Tao, Liyun
    Ma, Shaojie
    Dong, Yibao
    Li, Zhenfei
    Du, Lianlian
    Guo, Yao
    Song, Kun
    Zhao, Xiaopeng
    LASER & PHOTONICS REVIEWS, 2024, 18 (11)
  • [46] Generation of higher-order orbital angular momentum squeezed light
    Ma, Long
    Yan, Manjun
    OPTIK, 2022, 251
  • [47] Rainbow trapping based on higher-order topological corner modes
    Liang, Li
    Zhou, Xiaoxi
    Hu, Jun-Hui
    Wang, Hai-Xiao
    Jiang, Jian-Hua
    Hou, Bo
    OPTICS LETTERS, 2022, 47 (06) : 1454 - 1457
  • [48] Higher-order topological insulator phase in a modified Haldane model
    Wang, Baokai
    Zhou, Xiaoting
    Lin, Hsin
    Bansil, Arun
    PHYSICAL REVIEW B, 2021, 104 (12)
  • [49] Higher-order quantum spin Hall effect in a photonic crystal
    Xie, Biye
    Su, Guangxu
    Wang, Hong-Fei
    Liu, Feng
    Hu, Lumang
    Yu, Si-Yuan
    Zhan, Peng
    Lu, Ming-Hui
    Wang, Zhenlin
    Chen, Yan-Feng
    NATURE COMMUNICATIONS, 2020, 11 (01)
  • [50] Single-mode lasing based on PT-breaking of two-dimensional photonic higher-order topological
    Zhu, Bofeng
    Wang, Qiang
    Zeng, Yongquan
    Wang, Qi Jie
    Chong, Y. D.
    PHYSICAL REVIEW B, 2021, 104 (14)