Mid-infrared spectroscopy and machine learning for postconsumer plastics recycling

被引:12
作者
Stavinski, Nicholas [1 ]
Maheshkar, Vaishali [2 ]
Thomas, Sinai [1 ]
Dantu, Karthik [2 ]
Velarde, Luis [1 ]
机构
[1] SUNY Buffalo, Dept Chem, Buffalo, NY 14260 USA
[2] SUNY Buffalo, Dept Comp Sci & Engn, Buffalo, NY 14260 USA
来源
ENVIRONMENTAL SCIENCE-ADVANCES | 2023年 / 2卷 / 08期
基金
美国国家科学基金会;
关键词
MARINE DEBRIS; SPECTRA; IDENTIFICATION; POLYETHYLENE; INGESTION; POLYMERS; MIR; IR;
D O I
10.1039/d3va00111c
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Materials recovery facilities (MRFs) require new automated technologies if growing recycling demands are to be met. Current optical screening devices use visible (VIS) and near-infrared (NIR) wavelengths, frequency ranges that can experience challenges during the characterization of postconsumer plastic waste (PCPW) because of the overly-absorbing spectral bands from dyes and other polymer additives. Technological bottlenecks such as these contribute to 91% of plastic waste never actually being recycled. The mid-infrared (MIR) region has attracted recent attention due to inherent advantages over the VIS and NIR. The fundamental vibrational modes found therein make MIR frequencies promising for high fidelity machine learning (ML) classification. To-date, there are no ML evaluations of extensive MIR spectral datasets reflecting PCPW that would be encountered at MRFs. This study establishes quantifiable metrics, such as model accuracy and prediction time, for classification of a comprehensive MIR database consisting of five PCPW classes that are of economic interest: polyethylene terephthalate (PET #1), high-density polyethylene (HDPE #2), low-density polyethylene (LDPE #4), polypropylene (PP #5), and polystyrene (PS #6). Autoencoders, an unsupervised ML algorithm, were applied to the random forest (RF), k-nearest neighbor (KNN), support vector machine (SVM), and logistic regression (LR) models. The RF model achieved accuracies of 100.0% in both the C-H stretching region (2990-2820 cm(-1)) and molecular fingerprint region (1500-650 cm(-1)). The C-H stretching region was found to be free from additives that were responsible for misclassification in other regions, making it a fruitful frequency range for future PCPW sorting technologies. The MIR classification of black plastics and polyethylene PCPW using ML autoencoders was also evaluated for the first time.
引用
收藏
页码:1099 / 1109
页数:11
相关论文
共 50 条
[41]   Mid-infrared laser absorption spectroscopy of NO2 at elevated temperatures [J].
Sur, Ritobrata ;
Peng, Wen Yu ;
Strand, Christopher ;
Spearrin, R. Mitchell ;
Jeffries, Jay B. ;
Hanson, Ronald K. ;
Bekal, Anish ;
Haider, Purbasha ;
Poonacha, Samhitha P. ;
Vartak, Sameer ;
Sridharan, Arun K. .
JOURNAL OF QUANTITATIVE SPECTROSCOPY & RADIATIVE TRANSFER, 2017, 187 :364-374
[42]   HHT diagnosis by Mid-infrared spectroscopy and artificial neural network analysis [J].
Lux, Andreas ;
Mueller, Ralf ;
Tulk, Mark ;
Olivieri, Carla ;
Zarrabeita, Roberto ;
Salonikios, Theresia ;
Wirnitzer, Bernhard .
ORPHANET JOURNAL OF RARE DISEASES, 2013, 8
[43]   Citrus species and hybrids depicted by near- and mid-infrared spectroscopy [J].
Pascoa, Ricardo N. M. J. ;
Moreira, Silvana ;
Lopes, Joao A. ;
Sousa, Clara .
JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE, 2018, 98 (10) :3953-3961
[44]   Development of a rapid "fingerprinting" system for wine authenticity by mid-infrared spectroscopy [J].
Bevin, Christopher J. ;
Fergusson, Allison J. ;
Perry, Wade B. ;
Janik, Leslie J. ;
Cozzolino, Daniel .
JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2006, 54 (26) :9713-9718
[45]   GOALS-JWST: Mid-infrared Spectroscopy of the Nucleus of NGC 7469 [J].
Armus, L. ;
Lai, T. ;
U, V. ;
Larson, K. L. ;
Diaz-Santos, T. ;
Evans, A. S. ;
Malkan, M. A. ;
Rich, J. ;
Medling, A. M. ;
Law, D. R. ;
Inami, H. ;
Muller-Sanchez, F. ;
Charmandaris, V. ;
van der Werf, P. ;
Stierwalt, S. ;
Linden, S. ;
Privon, G. C. ;
Barcos-Munoz, L. ;
Hayward, C. ;
Song, Y. ;
Appleton, P. ;
Aalto, S. ;
Bohn, T. ;
Boker, T. ;
Brown, M. J. I. ;
Finnerty, L. ;
Howell, J. ;
Iwasawa, K. ;
Kemper, F. ;
Marshall, J. ;
Mazzarella, J. M. ;
McKinney, J. ;
Murphy, E. J. ;
Sanders, D. ;
Surace, J. .
ASTROPHYSICAL JOURNAL LETTERS, 2023, 942 (02)
[46]   Chirped pulse upconversion for femtosecond mid-infrared spectroscopy at 100 kHz [J].
Jonusas, Mindaugas ;
Bournet, Quentin ;
Bonvalet, Adeline ;
Natile, Michele ;
Guichard, Florent ;
Zaouter, Yoann ;
Georges, Patrick ;
Druon, Frederic ;
Hanna, Marc ;
Joffre, Manuel .
OPTICS EXPRESS, 2024, 32 (05) :8020-8029
[47]   Spectroscopy of C60+ and C120+ in the mid-infrared [J].
Kappe, Miriam ;
Schiller, Arne ;
Gruber, Elisabeth ;
Jank, Dominik ;
Gatt, Michael ;
Schoepfer, Gabriel ;
Oncak, Milan ;
Ellis, Andrew M. ;
Scheier, Paul .
JOURNAL OF CHEMICAL PHYSICS, 2023, 159 (20)
[48]   Characterization of Greenhouse Soil Properties Using Mid-infrared Photoacoustic Spectroscopy [J].
Du Changwen ;
Deng Jing ;
Zhou Jianmin ;
Wang Huoyan ;
Chen Xiaoqin .
SPECTROSCOPY LETTERS, 2011, 44 (05) :359-368
[49]   Application of mid-infrared photoacoustic spectroscopy in monitoring carbonate content in soils [J].
Du Changwen ;
Ma Zhaoyang ;
Zhou Jianmin ;
Goyne, Keith W. .
SENSORS AND ACTUATORS B-CHEMICAL, 2013, 188 :1167-1175
[50]   Application of Infrared Reflectance Spectroscopy on Plastics in Cultural Heritage Collections: A Comparative Assessment of Two Portable Mid-Fourier Transform Infrared Reflection Devices [J].
Angelin, Eva Mariasole ;
de Sa, Susana Franca ;
Soares, Ines ;
Callapez, Maria Elvira ;
Ferreira, Joana Lia ;
Melo, Maria Joao ;
Bacci, Mauro ;
Picollo, Marcello .
APPLIED SPECTROSCOPY, 2021, 75 (07) :818-833