Quantification and Analysis of Niobium Carbide Precipitation in Cold-Rolled High-Strength Low-Alloy Steel during Annealing Process

被引:1
|
作者
An, Jeong Hun [1 ]
Lee, Changgeun [2 ]
Shin, Sang Hun [2 ]
Son, Ji Hee [1 ]
Na, Kwang Su [2 ]
机构
[1] Hyundai Steel R&D Ctr, Mat Technol & Anal Team, 1480 Bukbusaneop Ro, Dangjin Si 31719, Chungnam, South Korea
[2] Hyundai Steel R&D Ctr, Cold Rolled Steel Prod Dev Team, 1480 Bukbusaneop Ro, Dangjin Si 31790, Chungnam, South Korea
关键词
annealing; cold-rolled high-strength low-alloy; electron backscatter diffraction; niobium carbide; scanning electron microscopy; transmission electron microscopy; SPECIMEN THICKNESS; MICROSTRUCTURE; FERRITE;
D O I
10.1002/srin.202300347
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
High-strength low-alloy (HSLA) steels are widely used to their excellent mechanical properties. Despite this, the precipitation process occurring during annealing after cold rolling has not been extensively studied. Herein, the precipitation of niobium carbide (NbC) is examined during both hot-rolling and annealing processes. Field emission transmission electron microscopy and inductively coupled plasma optical emission spectroscopy are employed for the analyses, with a particular focus on using the residual electrochemical extraction method for quantification. The NbC precipitates formed during hot rolling and annealing are individually assessed. The findings indicate that new NbC precipitates form during annealing process after cold rolling, and these precipitates are smaller than those formed during hot rolling. This study offers valuable insights into the precipitation process of NbC in cold-rolled HSLA steel and has implications for the development of improved steel processing techniques. This study investigates the precipitation of niobium carbide (NbC) in high-strength low-alloy steel using field emission transmission electron microscopy and inductively coupled plasma optical emission spectroscopy. Herein, how the NbC precipitates change during hot rolling and cold-rolled annealing are observed. These findings offer crucial insights that can help optimize the mechanical properties of steel and expand its range of applications.image (c) 2023 WILEY-VCH GmbH
引用
收藏
页数:9
相关论文
共 50 条
  • [21] Design of a low-alloy high-strength and high-toughness martensitic steel
    Zhao, Yan-jun
    Ren, Xue-ping
    Yang, Wen-chao
    Zang, Yue
    INTERNATIONAL JOURNAL OF MINERALS METALLURGY AND MATERIALS, 2013, 20 (08) : 733 - 740
  • [22] Design of a low-alloy high-strength and high-toughness martensitic steel
    Yan-jun Zhao
    Xue-ping Ren
    Wen-chao Yang
    Yue Zang
    International Journal of Minerals, Metallurgy, and Materials, 2013, 20 : 733 - 740
  • [23] The Low-Cycle Fatigue Behavior of a High-Strength Low-Alloy Steel Subjected to Tempforming
    Dolzhenko, Anastasiia
    Dolzhenko, Pavel
    Dudko, Valeriy
    Kaibyshev, Rustam
    Belyakov, Andrey
    MATERIALS, 2025, 18 (05)
  • [24] Hot Deformation and Corrosion Resistance of High-Strength Low-Alloy Steel
    Kingkam, Wilasinee
    Zhao, Cheng-Zhi
    Li, Hong
    Zhang, He-Xin
    Li, Zhi-Ming
    ACTA METALLURGICA SINICA-ENGLISH LETTERS, 2019, 32 (04) : 495 - 505
  • [25] Crystallographic Understanding of the Effect of Ni Content on the Hardenability of High-Strength Low-Alloy Steel
    Su Shuai
    Han Peng
    Yang Shanwu
    Wang Hua
    Jin Yaohui
    Shang Chengjia
    ACTA METALLURGICA SINICA, 2024, 60 (06) : 789 - 801
  • [26] Features of the Effect of Microstructure Characteristics on Corrosion Resistance of Cold-Rolled High-Strength Low-Alloy Steels (HSLA) Grade 260-300 for Automobile Building
    Rodionova, I. G.
    Amezhnov, A. V.
    Shaposhnikov, N. G.
    Gladchenkova, Y. S.
    D'yakonov, D. L.
    METALLURGIST, 2020, 63 (9-10) : 920 - 932
  • [27] Design of a low-alloy high-strength and high-toughness martensitic steel
    Yan-jun Zhao
    Xue-ping Ren
    Wen-chao Yang
    Yue Zang
    InternationalJournalofMineralsMetallurgyandMaterials, 2013, 20 (08) : 733 - 740
  • [28] Effects of Nanosized Nb Carbide Precipitates on the Corrosion Behavior of High-Strength Low-Alloy Steel in Simulated Seawater
    Zhao, Qiyue
    Wang, Zihao
    Fan, Endian
    Wu, Xiaoguang
    Huang, Yunhua
    Li, Xiaogang
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2017, 12 (09): : 7989 - 7996
  • [29] Interdendritic microsegregation development of high-strength low-alloy steels during continuous casting process
    Zhang, Dayue
    Strangwood, Martin
    MATERIALS SCIENCE AND TECHNOLOGY, 2019, 35 (11) : 1337 - 1346
  • [30] Improving the Low-Temperature Toughness of a High-Strength, Low-Alloy Steel with a Lamellarization Heat Treatment
    Frichtl, Matthew
    Anwar, Yusra
    Strifas, Aphrodite
    Ankem, Sreeramamurthy
    METALS AND MATERIALS INTERNATIONAL, 2023, 29 (04) : 879 - 891