Air pollution;
Data models;
Atmospheric modeling;
Monitoring;
Training;
Convolutional neural networks;
Big Data;
Air pollution data;
graph convolutional network;
transfer learning;
automatic;
missing data pattern identification;
missing data pattern recovery;
similarity matrix;
spatial-temporal;
PARTICULATE MATTER;
NEURAL-NETWORK;
DISEASE;
QUALITY;
CITIES;
PM2.5;
MODEL;
PM10;
LSTM;
CNN;
D O I:
10.1109/TBDATA.2023.3277710
中图分类号:
TP [自动化技术、计算机技术];
学科分类号:
0812 ;
摘要:
Missing data pattern identification and recovery (MDIR) is vital for accurate air pollution monitoring. To recover the missing air pollution data, GCN-ST-MDIR, a Graph Convolutional Network (GCN)-based MDIR framework, is proposed to identify daily missing data patterns and automatically select the best recovery method. GCN-ST-MDIR presents four novelties: (1) A new graph construction is developed to improve GCN data representation for MDIR using S-T similarity matrix and domain-specific knowledge (e.g., weekend/weekday). (2) A TL component is used to pre-train LSCE and ILSCE models. (3) A GCN structure outputs a selection indicator to determine the dominant missing pattern for daily input. The pre-trained data recovery model's accuracy is incorporated into the GCN loss function to penalize the wrong indicator. (4) The output of the GCN structure is used as a score to combine LSCE and ILSCE. Results show that the domain-specific S-T regularity and irregularity can be used as the prior information for both GCN and ILSCE/LSCE to enhance feature extraction. Our model considerably improves the recovery performance as compared to the baselines. GCN-ST-MDIR has achieved an accuracy of 88.48% for general missing data recovery with consecutively and sporadically missing data. GCN-ST-MDIR can be extended to many other S-T MDIR challenges.
机构:
Qingdao Univ, Sch Automat, Inst Future, Qingdao 266071, Peoples R China
Shandong Key Lab Ind Control Technol, Qingdao 266071, Peoples R ChinaQingdao Univ, Sch Automat, Inst Future, Qingdao 266071, Peoples R China
Yang, Haiqiang
Zhang, Xinming
论文数: 0引用数: 0
h-index: 0
机构:
Zhejiang Wanli Univ, Logist & Ecommerce Sch, Ningbo 315100, Peoples R ChinaQingdao Univ, Sch Automat, Inst Future, Qingdao 266071, Peoples R China
Zhang, Xinming
Li, Zihan
论文数: 0引用数: 0
h-index: 0
机构:
Qingdao Univ, Inst Future, Coll Phys, Qingdao 266071, Peoples R ChinaQingdao Univ, Sch Automat, Inst Future, Qingdao 266071, Peoples R China
Li, Zihan
Cui, Jianxun
论文数: 0引用数: 0
h-index: 0
机构:
Harbin Inst Technol, Sch Transportat Sci & Engn, Harbin 150090, Peoples R ChinaQingdao Univ, Sch Automat, Inst Future, Qingdao 266071, Peoples R China
机构:
Institute of Urban Meteorology, China Meteorological Administration, BeijingInstitute of Urban Meteorology, China Meteorological Administration, Beijing
Wang Y.-T.
Yin Z.-P.
论文数: 0引用数: 0
h-index: 0
机构:
School of Remote Sensing and Information Engineering, Wuhan University, WuhanInstitute of Urban Meteorology, China Meteorological Administration, Beijing
Yin Z.-P.
Zheng Z.-F.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Urban Meteorology, China Meteorological Administration, BeijingInstitute of Urban Meteorology, China Meteorological Administration, Beijing
Zheng Z.-F.
Li J.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Urban Meteorology, China Meteorological Administration, BeijingInstitute of Urban Meteorology, China Meteorological Administration, Beijing
Li J.
Li Q.-C.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Urban Meteorology, China Meteorological Administration, BeijingInstitute of Urban Meteorology, China Meteorological Administration, Beijing
Li Q.-C.
Meng C.-L.
论文数: 0引用数: 0
h-index: 0
机构:
Institute of Urban Meteorology, China Meteorological Administration, BeijingInstitute of Urban Meteorology, China Meteorological Administration, Beijing
Meng C.-L.
Li W.
论文数: 0引用数: 0
h-index: 0
机构:
National Climate Center, BeijingInstitute of Urban Meteorology, China Meteorological Administration, Beijing