A mechanistic reinterpretation of fast inactivation in voltage-gated Na+ channels

被引:14
作者
Liu, Yichen [1 ]
Bassetto, Carlos A. Z. [2 ]
Pinto, Bernardo I. [2 ]
Bezanilla, Francisco [2 ,3 ]
机构
[1] Univ Chicago, Dept Neurobiol, Chicago, IL USA
[2] Univ Chicago, Dept Biochem & Mol Biol, Chicago, IL 60637 USA
[3] Ctr Interdisciplinario Neurociencias Valparaiso, Valparaiso, Chile
基金
美国国家科学基金会; 美国国家卫生研究院;
关键词
AMINO-ACID-RESIDUES; SODIUM-CHANNEL; MOVEMENT; MUTATION; IV; EPILEPSY; CURRENTS; BLOCK;
D O I
10.1038/s41467-023-40514-4
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Here, authors have identified two pairs of large hydrophobic residues in the channel S6 segments that form the inactivation gate of eukaryotic Na+ channels. The hinged-lid model was long accepted as the canonical model for fast inactivation in Nav channels. It predicts that the hydrophobic IFM motif acts intracellularly as the gating particle that binds and occludes the pore during fast inactivation. However, the observation in recent high-resolution structures that the bound IFM motif is located far from the pore, contradicts this preconception. Here, we provide a mechanistic reinterpretation of fast inactivation based on structural analysis and ionic/gating current measurements. We demonstrate that in Nav1.4 the final inactivation gate is comprised of two hydrophobic rings at the bottom of S6 helices. These rings function in series and close downstream of IFM binding. Reducing the volume of the sidechain in both rings leads to a partially conductive, leaky inactivated state and decreases the selectivity for Na+ ion. Altogether, we present an alternative molecular framework to describe fast inactivation.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Palmitoylation of Voltage-Gated Ion Channels
    Cassinelli, Silvia
    Vinola-Renart, Carla
    Benavente-Garcia, Anna
    Navarro-Perez, Maria
    Capera, Jesusa
    Felipe, Antonio
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (16)
  • [42] Voltage-gated calcium channels and disease
    Cain, Stuart M.
    Snutch, Terrance P.
    BIOFACTORS, 2011, 37 (03) : 197 - 205
  • [43] Thermal sensitivity of voltage-gated Na+ channels and A-type K+ channels contributes to somatosensory neuron excitability at cooling temperatures
    Sarria, Ignacio
    Ling, Jennifer
    Gu, Jianguo G.
    JOURNAL OF NEUROCHEMISTRY, 2012, 122 (06) : 1145 - 1154
  • [44] Coordinated role of voltage-gated sodium channels and the Na+/H+ exchanger in sustaining microglial activation during inflammation
    Hossain, Muhammad M.
    Sonsalla, Patricia K.
    Richardson, Jason R.
    TOXICOLOGY AND APPLIED PHARMACOLOGY, 2013, 273 (02) : 355 - 364
  • [45] Effects of 4,9-anhydrotetrodotoxin on voltage-gated Na+ channels of mouse vas deferens myocytes and recombinant NaV1.6 channels
    Takahara, Kohei
    Yamamoto, Tadashi
    Uchida, Keiichiro
    Zhu, Hai-Lei
    Shibata, Atsushi
    Inai, Tetsuichiro
    Noguchi, Mitsuru
    Yotsu-Yamashita, Mari
    Teramoto, Noriyoshi
    NAUNYN-SCHMIEDEBERGS ARCHIVES OF PHARMACOLOGY, 2018, 391 (05) : 489 - 499
  • [46] Na+/Ca2+ selectivity in the bacterial voltage-gated sodium channel NavAb
    Corry, Ben
    PEERJ, 2013, 1
  • [47] Structural Pharmacology of Voltage-Gated Sodium Channels
    Noreng, Sigrid
    Li, Tianbo
    Payandeh, Jian
    JOURNAL OF MOLECULAR BIOLOGY, 2021, 433 (17)
  • [48] Voltage-gated calcium channels in genetic diseases
    Bidaud, Isabelle
    Mezghrani, Alexandre
    Swayne, Leigh Anne
    Monteil, Arnaud
    Lory, Philippe
    BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH, 2006, 1763 (11): : 1169 - 1174
  • [49] Interaction of MDIMP with the Voltage-Gated Calcium Channels
    De La Rosa, Juan A. M.
    Garcia-Castaneda, Maricela
    Nishigaki, Takuya
    Carlos Gomora, Juan
    Mancilla-Percino, Teresa
    Avila, Guillermo
    MOLECULAR PHARMACOLOGY, 2020, 98 (03) : 211 - 221
  • [50] Neurological perspectives on voltage-gated sodium channels
    Eijkelkamp, Niels
    Linley, John E.
    Baker, Mark D.
    Minett, Michael S.
    Cregg, Roman
    Werdehausen, Robert
    Rugiero, Francois
    Wood, John N.
    BRAIN, 2012, 135 : 2585 - 2612