Fuzzy Disturbance Observer-Based Fixed-Time Sliding Mode Control for Hypersonic Morphing Vehicles With Uncertainties

被引:26
作者
Chen, Haolan [1 ]
Wang, Peng [1 ]
Tang, Guojian [1 ]
机构
[1] Natl Univ Def Technol, Coll Aerosp Sci & Engn, Changsha 410073, Peoples R China
关键词
Aerodynamics; Disturbance observers; Vehicle dynamics; Uncertainty; Control systems; Convergence; Stability criteria; Fixed-time stability; fuzzy disturbance observer (FDO); homogeneity theory; hypersonic morphing vehicles (HMVs); sliding mode control (SMC); CONVERGENCE TIME; AIRCRAFT; SYSTEMS; DESIGN;
D O I
10.1109/TAES.2022.3227886
中图分类号
V [航空、航天];
学科分类号
08 ; 0825 ;
摘要
This work focuses on the attitude control problem for hypersonic morphing vehicles (HMVs) with uncertainties. A span-morphing HMV model is first established with lumped disturbances. Based on fixed-time technique, a disturbance observer with fuzzy logic system (FLS) is proposed to enhance the robustness by estimating the unmodeled dynamics and external disturbances in fixed settling time. The multivariable fixed-time sliding mode manifold is applied to the transformed control system, which guarantees a direct control input design from attitude command and decent tracking performance. Then, the control system degenerates into an autonomous system, and the closed-loop fixed-time stability is ensured via Lyapunov synthesis and homogeneity theory. Finally, simulation results are presented to demonstrate the effectiveness of the proposed control scheme.
引用
收藏
页码:3521 / 3530
页数:10
相关论文
共 40 条
[1]   Performance based multidisciplinary design optimization of morphing aircraft [J].
Afonso, Frederico ;
Vale, Jose ;
Lau, Fernando ;
Suleman, Afzal .
AEROSPACE SCIENCE AND TECHNOLOGY, 2017, 67 :1-12
[2]   A fuzzy disturbance observer based control approach for a novel 1-DOF micropositioning mechanism [J].
Al-Jodah, Ammar ;
Shirinzadeh, Bijan ;
Ghafarian, Mohammadali ;
Das, Tilok Kumar ;
Tian, Yanling ;
Zhang, Dawei .
MECHATRONICS, 2020, 65
[3]   Integrated method of guidance, control and morphing for hypersonic morphing vehicle in glide phase [J].
Bao, Cunyu ;
Wang, Peng ;
Tang, Guojian .
CHINESE JOURNAL OF AERONAUTICS, 2021, 34 (05) :535-553
[4]   Integrated Guidance and Control for Hypersonic Morphing Missile Based on Variable Span Auxiliary Control [J].
Bao, Cunyu ;
Wang, Peng ;
Tang, Guojian .
INTERNATIONAL JOURNAL OF AEROSPACE ENGINEERING, 2019, 2019
[5]   Multivariable continuous fixed-time second-order sliding mode control: design and convergence time estimation [J].
Basin, Michael ;
Panathula, Chandrasekhara Bharath ;
Shtessel, Yuri .
IET CONTROL THEORY AND APPLICATIONS, 2017, 11 (08) :1104-1111
[6]   Hypersonic Missile Adaptive Sliding Mode Control Using Finite- and Fixed-Time Observers [J].
Basin, Michael V. ;
Yu, Polk ;
Shtessel, Yuri B. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2018, 65 (01) :930-941
[7]   Finite-time stability of continuous autonomous systems [J].
Bhat, SP ;
Bernstein, DS .
SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2000, 38 (03) :751-766
[8]   Geometric homogeneity with applications to finite-time stability [J].
Bhat, SP ;
Bernstein, DS .
MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 2005, 17 (02) :101-127
[9]   Sliding Mode Control for Mismatched Uncertain Systems Using an Extended Disturbance Observer [J].
Ginoya, Divyesh ;
Shendge, P. D. ;
Phadke, S. B. .
IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2014, 61 (04) :1983-1992
[10]   Switching control of morphing aircraft based on Q-learning [J].
Gong, Ligang ;
Wang, Qing ;
Hu, Changhua ;
Liu, Chen .
CHINESE JOURNAL OF AERONAUTICS, 2020, 33 (02) :672-687