Advanced Machine Learning Techniques for Accurate Very-Short-Term Wind Power Forecasting in Wind Energy Systems Using Historical Data Analysis

被引:22
作者
Ponkumar, G. [1 ]
Jayaprakash, S. [1 ]
Kanagarathinam, Karthick [2 ]
机构
[1] Sathyabama Inst Sci & Technol, Sch Elect & Elect Engn, Chennai 600119, Tamil Nadu, India
[2] GMR Inst Technol, Dept Elect & Elect Engn, Rajam 532127, Andhra Prades, India
关键词
wind energy; forecasting; machine learning; wind power prediction; COEFFICIENT;
D O I
10.3390/en16145459
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Accurate wind power forecasting plays a crucial role in the planning of unit commitments, maintenance scheduling, and maximizing profits for power traders. Uncertainty and changes in wind speeds pose challenges to the integration of wind power into the power system. Therefore, the reliable prediction of wind power output is a complex task with significant implications for the efficient operation of electricity grids. Developing effective and precise wind power prediction systems is essential for the cost-efficient operation and maintenance of modern wind turbines. This article focuses on the development of a very-short-term forecasting model using machine learning algorithms. The forecasting model is evaluated using LightGBM, random forest, CatBoost, and XGBoost machine learning algorithms with 16 selected parameters from the wind energy system. The performance of the machine learning-based wind energy forecasting is assessed using metrics such as mean absolute error (MAE), mean-squared error (MSE), root-mean-squared error (RMSE), and R-squared. The results indicate that the random forest algorithm performs well during training, while the CatBoost algorithm demonstrates superior performance, with an RMSE of 13.84 for the test set, as determined by 10-fold cross-validation.
引用
收藏
页数:24
相关论文
共 42 条
[31]   Forecasting Wind Power Generation Using Artificial Neural Network: "Pawan Danawi"-A Case Study from Sri Lanka [J].
Peiris, Amila T. ;
Jayasinghe, Jeevani ;
Rathnayake, Upaka .
JOURNAL OF ELECTRICAL AND COMPUTER ENGINEERING, 2021, 2021
[32]   TCIC_FS: Total correlation information coefficient-based feature selection method for high-dimensional data [J].
Qiu, Ping ;
Niu, Zhendong .
KNOWLEDGE-BASED SYSTEMS, 2021, 231 (231)
[33]  
Ragheb M, 2011, FUNDAMENTAL AND ADVANCED TOPICS IN WIND POWER, P19
[34]   How different power plant types contribute to electric grid reliability, resilience, and vulnerability: a comparative analytical framework [J].
Ramirez-Meyers, K. ;
Mann, W. Neal ;
Deetjen, T. A. ;
Johnson, S. C. ;
Rhodes, J. D. ;
Webber, M. E. .
PROGRESS IN ENERGY, 2021, 3 (03)
[35]   Enhancing wind power forecasting from meteorological parameters using machine learning models [J].
Singh, Upma ;
Rizwan, M. .
JOURNAL OF RENEWABLE AND SUSTAINABLE ENERGY, 2022, 14 (06)
[36]   Wind Speed Prediction Based on Statistical and Deep Learning Models br [J].
Tyass, Ilham ;
Khalili, Tajeddine ;
Rafik, Mohamed ;
Abdelouahed, Bellat ;
Raihani, Abdelhadi ;
Mansouri, Khalifa .
INTERNATIONAL JOURNAL OF RENEWABLE ENERGY DEVELOPMENT-IJRED, 2023, 12 (02) :288-299
[37]   Technologies and perspectives for achieving carbon neutrality [J].
Wang, Fang ;
Harindintwali, Jean Damascene ;
Yuan, Zhizhang ;
Wang, Min ;
Wang, Faming ;
Li, Sheng ;
Yin, Zhigang ;
Huang, Lei ;
Fu, Yuhao ;
Li, Lei ;
Chang, Scott X. ;
Zhang, Linjuan ;
Rinklebe, Jorg ;
Yuan, Zuoqiang ;
Zhu, Qinggong ;
Xiang, Leilei ;
Tsang, Daniel C. W. ;
Xu, Liang ;
Jiang, Xin ;
Liu, Jihua ;
Wei, Ning ;
Kastner, Matthias ;
Zou, Yang ;
Ok, Yong Sik ;
Shen, Jianlin ;
Peng, Dailiang ;
Zhang, Wei ;
Barcelo, Damia ;
Zhou, Yongjin ;
Bai, Zhaohai ;
Li, Boqiang ;
Zhang, Bin ;
Wei, Ke ;
Cao, Hujun ;
Tan, Zhiliang ;
Zhao, Liu-bin ;
He, Xiao ;
Zheng, Jinxing ;
Bolan, Nanthi ;
Liu, Xiaohong ;
Huang, Changping ;
Dietmann, Sabine ;
Luo, Ming ;
Sun, Nannan ;
Gong, Jirui ;
Gong, Yulie ;
Brahushi, Ferdi ;
Zhang, Tangtang ;
Xiao, Cunde ;
Li, Xianfeng .
INNOVATION, 2021, 2 (04)
[38]   A Review of Wind Power Forecasting Models [J].
Wang, Xiaochen ;
Guo, Peng ;
Huang, Xiaobin .
PROCEEDINGS OF INTERNATIONAL CONFERENCE ON SMART GRID AND CLEAN ENERGY TECHNOLOGIES (ICSGCE 2011), 2011, 12
[39]   A Deep Learning Framework for Day Ahead Wind Power Short-Term Prediction [J].
Xu, Peihua ;
Zhang, Maoyuan ;
Chen, Zhenhong ;
Wang, Biqiang ;
Cheng, Chi ;
Liu, Renfeng .
APPLIED SCIENCES-BASEL, 2023, 13 (06)
[40]   Site selection of wind farms using GIS and multi-criteria decision making method in Wafangdian, China [J].
Xu, Ye ;
Li, Ye ;
Zheng, Lijun ;
Cui, Liang ;
Li, Sha ;
Li, Wei ;
Cai, Yanpeng .
ENERGY, 2020, 207