MATHEMATICAL FOUNDATIONS OF COMPUTING
|
2024年
/
7卷
/
04期
关键词:
Bernstein-Kantorovich operators;
rate of convergence;
modulus of continuity;
bivariate Bernstein-Kantorovich operators;
affine functions;
positive linear operators;
D O I:
10.3934/mfc.2023030
中图分类号:
TP301 [理论、方法];
学科分类号:
081202 ;
摘要:
. In this paper, we construct a new sequence of Riemann-Liouville type fractional Bernstein-Kantorovich operators Kn & alpha;(f; x) depending on a parameter & alpha;. We prove a Korovkin type approximation theorem and discuss the rate of convergence with the first and second order modulus of continuity of these operators. Moreover, we introduce a new operator that preserves affine functions from Riemann-Liouville type fractional Bernstein-Kantorovich operators. Further, we define the bivariate case of Riemann-Liouville type fractional Bernstein-Kantorovich operators and investigate the order of convergence. Some numerical results are given to illustrate the convergence of these operators and its comparison with the classical case of these operators.
机构:
King Abdulaziz Univ, Appl Coll, Dept Gen Required Courses, Math, Jeddah, Saudi Arabia
King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, Jeddah, Saudi ArabiaCent Univ Haryana, Sch Basic Sci, Jaat 123031, Haryana, India
机构:
King Abdulaziz Univ, Fac Sci, Dept Math, Operator Theory & Applicat Res Grp, Jeddah, Saudi ArabiaCent Univ Haryana, Sch Basic Sci, Jaat 123031, Haryana, India
机构:
Quanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Fujian, Peoples R ChinaQuanzhou Normal Univ, Sch Math & Comp Sci, Quanzhou 362000, Fujian, Peoples R China