CBANet: An End-to-End Cross-Band 2-D Attention Network for Hyperspectral Change Detection in Remote Sensing

被引:69
作者
Li, Yinhe [1 ]
Ren, Jinchang [1 ,2 ]
Yan, Yijun [1 ]
Liu, Qiaoyuan [3 ]
Ma, Ping [1 ]
Petrovski, Andrei [1 ]
Sun, Haijiang [3 ]
机构
[1] Robert Gordon Univ, Natl Subsea Ctr, Aberdeen AB21 0BH, Scotland
[2] Guangdong Polytech Normal Univ GPNU, Sch Comp Sci, Guangzhou 510651, Peoples R China
[3] Chinese Acad Sci, Changchun Inst Opt Fine Mech & Phys, Changchun 130033, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
关键词
Change detection (CD); cross-band self-attention network; hyperspectral images (HSI); spatial-spectral feature extraction; IMAGE DATA; CLASSIFICATION; MAD;
D O I
10.1109/TGRS.2023.3276589
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
As a fundamental task in remote sensing (RS) observation of the earth, change detection (CD) using hyperspectral images (HSI) features high accuracy due to the combination of the rich spectral and spatial information, especially for identifying land-cover variations in bi-temporal HSIs. Relying on the image difference, existing HSI CD methods fail to preserve the spectral characteristics and suffer from high data dimensionality, making them extremely challenging to deal with changing areas of various sizes. To tackle these challenges, we propose a cross-band 2-D self-attention network (CBANet) for end-to-end HSI CD. By embedding a cross-band feature extraction module into a 2-D spatial-spectral self-attention module, CBANet is highly capable of extracting the spectral difference of matching pixels by considering the correlation between adjacent pixels. The CBANet has shown three key advantages: 1) less parameters and high efficiency; 2) high efficacy of extracting representative spectral information from bi-temporal images; and 3) high stability and accuracy for identifying both sparse sporadic changing pixels and large changing areas whilst preserving the edges. Comprehensive experiments on three publicly available datasets have fully validated the efficacy and efficiency of the proposed methodology.
引用
收藏
页数:11
相关论文
共 52 条
[1]  
Agarap A F., Deep Learning using Rectified Linear Units, DOI DOI 10.48550/ARXIV.1803.08375V2
[2]   Classification of Hyperspectral Images With Regularized Linear Discriminant Analysis [J].
Bandos, Tatyana V. ;
Bruzzone, Lorenzo ;
Camps-Valls, Gustavo .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2009, 47 (03) :862-873
[3]   3-D Deep Learning Approach for Remote Sensing Image Classification [J].
Ben Hamida, Amina ;
Benoit, Alexandre ;
Lambert, Patrick ;
Ben Amar, Chokri .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (08) :4420-4434
[4]   Rapid Detection of Multi-QR Codes Based on Multistage Stepwise Discrimination and a Compressed MobileNet [J].
Chen, Rongjun ;
Huang, Hongxing ;
Yu, Yongxing ;
Ren, Jinchang ;
Wang, Peixian ;
Zhao, Huimin ;
Lu, Xu .
IEEE INTERNET OF THINGS JOURNAL, 2023, 10 (18) :15966-15979
[5]   PCA-based land-use change detection and analysis using multitemporal and multisensor satellite data [J].
Deng, J. S. ;
Wang, K. ;
Deng, Y. H. ;
Qi, G. J. .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2008, 29 (16) :4823-4838
[6]   A Multisquint Framework for Change Detection in High-Resolution Multitemporal SAR Images [J].
Dominguez, Elias Mendez ;
Meier, Erich ;
Small, David ;
Schaepman, Michael E. ;
Bruzzone, Lorenzo ;
Henke, Daniel .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (06) :3611-3623
[7]   Fusion of Difference Images for Change Detection Over Urban Areas [J].
Du, Peijun ;
Liu, Sicong ;
Gamba, Paolo ;
Tan, Kun ;
Xia, Junshi .
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2012, 5 (04) :1076-1086
[8]   Advances in Spectral-Spatial Classification of Hyperspectral Images [J].
Fauvel, Mathieu ;
Tarabalka, Yuliya ;
Benediktsson, Jon Atli ;
Chanussot, Jocelyn ;
Tilton, James C. .
PROCEEDINGS OF THE IEEE, 2013, 101 (03) :652-675
[9]   Tensor Singular Spectrum Analysis for 3-D Feature Extraction in Hyperspectral Images [J].
Fu, Hang ;
Sun, Genyun ;
Zhang, Aizhu ;
Shao, Baojie ;
Ren, Jinchang ;
Jia, Xiuping .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[10]   Ndvi: Vegetation change detection using remote sensing and gis - A case study of Vellore District [J].
Gandhi, Meera G. ;
Parthiban, S. ;
Thummalu, Nagaraj ;
Christy, A. .
3RD INTERNATIONAL CONFERENCE ON RECENT TRENDS IN COMPUTING 2015 (ICRTC-2015), 2015, 57 :1199-1210