p-adic Eichler-Shimura maps for the modular curve

被引:0
作者
Camargo, Juan Esteban Rodriguez [1 ]
机构
[1] Max Planck Inst Math, Vivatsgasse 7, D-53111 Bonn, Germany
关键词
Eichler-Shimura maps; p-adic modular symbols; modular curves; p-adic Hodge theory; COHOMOLOGY;
D O I
10.1112/S0010437X23007182
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give a new proof of Faltings's p-adic Eichler-Shimura decomposition of the modular curves via Bernstein-Gelfand-Gelfand (BGG) methods and the Hodge-Tate period map. The key property is the relation between the Tate module and the Faltings extension, which was used in the original proof. Then we construct overconvergent Eichler-Shimura maps for the modular curves providing 'the second half' of the overconvergent Eichler-Shimura map of Andreatta, Iovita and Stevens. We use higher Coleman theory on the modular curve developed by Boxer and Pilloni to show that the small-slope part of the Eichler-Shimura maps interpolates the classical p-adic Eichler-Shimura decompositions. Finally, we prove that overconvergent Eichler-Shimura maps are compatible with Poincare and Serre pairings.
引用
收藏
页码:1214 / 1249
页数:37
相关论文
共 25 条
[1]   OVERCONVERGENT DE RHAM EICHLER-SHIMURA MORPHISMS [J].
Andreatta, Fabrizio ;
Iovita, Adrian .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2024, 23 (02) :647-703
[2]   TRIPLE PRODUCT p-ADIC L-FUNCTIONS ASSOCIATED TO FINITE SLOPE p-ADIC FAMILIES OF MODULAR FORMS [J].
Andreatta, Fabrizio ;
Iovita, Adrian .
DUKE MATHEMATICAL JOURNAL, 2021, 170 (09) :1989-2083
[3]   OVERCONVERGENT EICHLER-SHIMURA ISOMORPHISMS [J].
Andreatta, Fabrizio ;
Iovita, Adrian ;
Stevens, Glenn .
JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2015, 14 (02) :221-274
[4]  
Ash A., 2008, PREPRINT
[5]  
Boxer G, 2022, PIJOURNAL G OM ALG B, V6, P16
[6]  
Boxer G, 2021, Arxiv, DOI [arXiv:2110.10251, 10.48550/arXiv:2110.10251, DOI 10.48550/ARXIV:2110.10251]
[7]  
Buzzard K., 2007, LONDON MATH SOC LECT, V1, P59
[8]   On the generic part of the cohomology of compact unitary Shimura varieties [J].
Caraiani, Ana ;
Scholze, Peter .
ANNALS OF MATHEMATICS, 2017, 186 (03) :649-766
[9]  
Chojecki P, 2017, DOC MATH, V22, P191
[10]  
Deligne P., 1973, Lecture Notes in Math., V349, P143