Randomization is all you need: A privacy-preserving federated learning framework for news recommendation

被引:7
|
作者
Huang, Xinyi [1 ]
Luo, Yuchuan [1 ]
Liu, Lin [1 ]
Zhao, Wentao [1 ]
Fu, Shaojing [1 ]
机构
[1] Natl Univ Def Technol, Coll Comp, Changsha 410073, Hunan, Peoples R China
关键词
Privacy-preserving; Recommendation system; Federated learning; Randomized decomposition;
D O I
10.1016/j.ins.2023.118943
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
News recommendation systems represent a critical solution to the problem of information overload, as they can suggest news that may be of interest to a particular user. Traditional recommendation systems require the collection of private information, which can lead to serious privacy concerns. Federated learning is a privacy-preserving framework that allows multiple users to train a global model without sharing their private data. In federated learning, users keep their private data locally and calculate the local gradients. In recommendation systems, however, the situation is the opposite, as users need to share their preferences with the server. Notably, user preferences are highly relevant to user privacy. The difference between recommendation systems and federated learning may lead to user privacy leakage. Accordingly, in this paper, we propose RD-FedRec, which follows a paradigm commonly used in real-world recommendation systems. First, we propose a randomized decomposition method to protect the privacy of user preferences, which has good compatibility and can preserve the privacy of recommendation results. Second, to improve recommendation efficiency, we introduce a recall phase that roughly filters news, thereby reducing the time overhead of the ranking phase. We implement RD-FedRec and evaluate its performance on two real-world datasets. Experimental results show that the accuracy and efficiency of RD-FedRec are comparable to state-of-the-art recommendation systems that do not provide privacy guarantees, and moreover that our proposed randomized decomposition method is compatible with most recommendation systems.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] A Privacy-Preserving and Verifiable Federated Learning Scheme
    Zhang, Xianglong
    Fu, Anmin
    Wang, Huaqun
    Zhou, Chunyi
    Chen, Zhenzhu
    ICC 2020 - 2020 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS (ICC), 2020,
  • [22] Privacy-Preserving and Verifiable Federated Learning Framework for Edge Computing
    Zhou, Hao
    Yang, Geng
    Huang, Yuxian
    Dai, Hua
    Xiang, Yang
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 565 - 580
  • [23] Robust privacy-preserving federated learning framework for IoT devices
    Han, Zhaoyang
    Zhou, Lu
    Ge, Chunpeng
    Li, Juan
    Liu, Zhe
    INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (11) : 9655 - 9673
  • [24] GAIN: Decentralized Privacy-Preserving Federated Learning
    Jiang, Changsong
    Xu, Chunxiang
    Cao, Chenchen
    Chen, Kefei
    JOURNAL OF INFORMATION SECURITY AND APPLICATIONS, 2023, 78
  • [25] A Game-theoretic Framework for Privacy-preserving Federated Learning
    Zhang, Xiaojin
    Fan, Lixin
    Wang, Siwei
    Li, Wenjie
    Chen, Kai
    Yang, Qiang
    ACM TRANSACTIONS ON INTELLIGENT SYSTEMS AND TECHNOLOGY, 2024, 15 (03)
  • [26] A Privacy-Preserving Federated Learning Framework With Lightweight and Fair in IoT
    Chen, Yange
    Liu, Lei
    Ping, Yuan
    Atiquzzaman, Mohammed
    Mumtaz, Shahid
    Zhang, Zhili
    Guizani, Mohsen
    Tian, Zhihong
    IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT, 2024, 21 (05): : 5843 - 5858
  • [27] FedCDR: Privacy-preserving federated cross-domain recommendation
    Yan, Dengcheng
    Zhao, Yuchuan
    Yang, Zhongxiu
    Jin, Ying
    Zhang, Yiwen
    DIGITAL COMMUNICATIONS AND NETWORKS, 2022, 8 (04) : 552 - 560
  • [28] A Privacy-Preserving Federated Learning Framework Based on Homomorphic Encryption
    Chen, Liangjiang
    Wang, Junkai
    Xiong, Ling
    Zeng, Shengke
    Geng, Jiazhou
    2023 IEEE INTERNATIONAL CONFERENCES ON INTERNET OF THINGS, ITHINGS IEEE GREEN COMPUTING AND COMMUNICATIONS, GREENCOM IEEE CYBER, PHYSICAL AND SOCIAL COMPUTING, CPSCOM IEEE SMART DATA, SMARTDATA AND IEEE CONGRESS ON CYBERMATICS,CYBERMATICS, 2024, : 512 - 517
  • [29] A Hierarchical Asynchronous Federated Learning Privacy-Preserving Framework for IoVs
    Zhou, Rui
    Niu, Xianhua
    Xiong, Ling
    Wang, Yangpeng
    Zhao, Yue
    Yu, Kai
    FRONTIERS IN CYBER SECURITY, FCS 2023, 2024, 1992 : 99 - 113
  • [30] OpenVFL: A Vertical Federated Learning Framework With Stronger Privacy-Preserving
    Yang, Yunbo
    Chen, Xiang
    Pan, Yuhao
    Shen, Jiachen
    Cao, Zhenfu
    Dong, Xiaolei
    Li, Xiaoguo
    Sun, Jianfei
    Yang, Guomin
    Deng, Robert
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2024, 19 : 9670 - 9681