A Momentum Contrastive Learning Framework for Low-Data Wafer Defect Classification in Semiconductor Manufacturing

被引:3
|
作者
Wang, Yi [1 ]
Ni, Dong [1 ]
Huang, Zhenyu [2 ]
机构
[1] Zhejiang Univ, Coll Control Sci & Engn, Hangzhou 310027, Peoples R China
[2] Intel Corp, Dalian 116630, Peoples R China
来源
APPLIED SCIENCES-BASEL | 2023年 / 13卷 / 10期
基金
美国国家科学基金会;
关键词
contrastive learning; low data; self-supervised learning; wafer bin map; defect classification; semiconductor manufacturing; NEURAL-NETWORK; BIN MAP; PATTERNS; IDENTIFICATION;
D O I
10.3390/app13105894
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Wafer bin maps (WBMs) are essential test data in semiconductor manufacturing. WBM defect classification can provide critical information for the improvement of manufacturing processes and yield. Although deep-learning-based automatic defect classification models have demonstrated promising results in recent years, they require a substantial amount of labeled data for training, and manual labeling is time-consuming. Such limitations impede the practical application of existing algorithms. This study introduces a low-data defect classification algorithm based on contrastive learning. By employing momentum contrastive learning, the network extracts effective representations from large-scale unlabeled WBMs. Subsequently, a prototypical network is utilized for fine-tuning with only a minimal amount of labeled data to achieve low-data classification. Experimental results reveal that the momentum contrastive learning method improves the defect classification performance by learning feature representation from large-scale unlabeled data. The proposed method attains satisfactory classification accuracy using a limited amount of labeled data and surpasses other comparative methods in performance. This approach allows for the exploitation of information derived from large-scale unlabeled data, significantly reducing the reliance on labeled data.
引用
收藏
页数:14
相关论文
共 50 条
  • [1] Improved wafer map defect pattern classification using automatic data augmentation based lightweight encoder network in contrastive learning
    Sheng, Yi
    Yan, Jinda
    Piao, Minghao
    JOURNAL OF INTELLIGENT MANUFACTURING, 2024,
  • [2] Wafer Defect Classification Algorithm With Label Embedding Using Contrastive Learning
    Hwang, Jeongjoon
    Ha, Somi
    Kim, Dohyun
    IEEE ACCESS, 2025, 13 : 9708 - 9717
  • [3] Supervised contrastive learning for wafer map pattern classification
    Bae, Youngjae
    Kang, Seokho
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2023, 126
  • [4] A CNN-Based Transfer Learning Method for Defect Classification in Semiconductor Manufacturing
    Imoto, Kazunori
    Nakai, Tomohiro
    Ike, Tsukasa
    Haruki, Kosuke
    Sato, Yoshiyuki
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2019, 32 (04) : 455 - 459
  • [5] Deep learning based automatic defect classification for semiconductor manufacturing
    Kim, Eunpa
    Shin, Myungchul
    Ahn, Hee-Jun
    Park, Soyoon
    Lee, Dong-Ryul
    Park, Haesung
    Shin, Minjung
    Ihm, Dongchul
    METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVII, 2023, 12496
  • [6] Multi-source wafer map retrieval based on contrastive learning for root cause analysis in semiconductor manufacturing
    Hong, Wei-Jyun
    Shen, Chia-Yu
    Wu, Pei-Yuan
    JOURNAL OF INTELLIGENT MANUFACTURING, 2025, 36 (01) : 259 - 270
  • [7] Wafer Defect Localization and Classification Using Deep Learning Techniques
    Shinde, Prashant P.
    Pai, Priyadarshini P.
    Adiga, Shashishekar P.
    IEEE ACCESS, 2022, 10 : 39969 - 39974
  • [8] Advances in machine learning and deep learning applications towards wafer map defect recognition and classification: a review
    Kim, Tongwha
    Behdinan, Kamran
    JOURNAL OF INTELLIGENT MANUFACTURING, 2023, 34 (08) : 3215 - 3247
  • [9] Self-Supervised Representation Learning for Wafer Bin Map Defect Pattern Classification
    Kahng, Hyungu
    Kim, Seoung Bum
    IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, 2021, 34 (01) : 74 - 86
  • [10] An intelligent system for wafer bin map defect diagnosis: An empirical study for semiconductor manufacturing
    Liu, Chiao-Wen
    Chien, Chen-Fu
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2013, 26 (5-6) : 1479 - 1486