Heat transfer analysis of Maxwell hybrid nanofluid with fractional Cattaneo heat flux

被引:8
|
作者
Hanif, Hanifa [1 ,2 ]
Lund, Liaquat Ali [3 ]
Mahat, Rahimah [4 ]
Shafie, Sharidan [2 ]
机构
[1] Sardar Bahadur Khan Womens Univ, Dept Math, Quetta, Pakistan
[2] Univ Teknol Malaysia, Fac Sci, Dept Math Sci, Johor Baharu 81310, Johor, Malaysia
[3] Sindh Agr Univ TandoJam, KCAET Khairpur Mirs, Sindh, Pakistan
[4] Univ Kuala Lumpur, Malaysian Inst Ind Technol, Masai 81750, Johor, Malaysia
关键词
Hybrid nanofluid; Cattaneo heat flux; Maxwell fluid model; Fractional derivative; FLOW;
D O I
10.1016/j.aej.2023.04.022
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Hybrid nanofluids are widely used to improve the efficiency of a thermal system in many aspects of engineering and science. Therefore, the current work is design to investigate the heat transfer of Cu-Fe3O4 nanoparticles in water base Maxwell fluid flow over a cone, which is kept in a porous medium. Additionally, the fluid experiences magnetic field and thermal radiation effects. As a result, the impacts of volume fraction, porosity, magnetic field, and thermal radiation are properly taken into account. It is observed that increasing temperature time relaxation with con-stant temperature fractional derivative decreases the thermal gradient, whereas increasing temper-ature fractional derivative parameter with constant time relaxation increases the thermal gradient. Moreover, adding 1% Cu-Fe3O4 increases the heat transfer rate of the fluid up to 1.13% and 1.24% when Rd = 0 and Rd = 0:2, respectively. On the other hand, the heat transfer rate of Maxwell fluid decreases up to 0.5% in the presence of a magnetic field specifically considering M = 2 without ther-mal radiation.(c) 2023 THE AUTHORS. Published by Elsevier BV on behalf of Faculty of Engineering, Alexandria University This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).
引用
收藏
页码:545 / 557
页数:13
相关论文
共 50 条
  • [41] Hybrid nanofluid flow over two different geometries with Cattaneo-Christov heat flux model and heat generation: A model with correlation coefficient and probable error
    Garia, Rashmi
    Rawat, Sawan Kumar
    Kumar, Manoj
    Yaseen, Moh
    CHINESE JOURNAL OF PHYSICS, 2021, 74 : 421 - 439
  • [42] Hall effects and Cattaneo-Christov heat flux on MHD flow of hybrid nanofluid over a varying thickness stretching surface
    Ali, Aamir
    Khan, Hajra Safdar
    Noor, Ifra
    Pasha, Amjad Ali
    Irshad, Kashif
    Al Mesfer, Mohammad K.
    Danish, Mohd
    MODERN PHYSICS LETTERS B, 2024, 38 (18):
  • [43] Thermodynamics of Cattaneo-Christov heat flux theory on hybrid nanofluid flow with variable viscosity, convective boundary, and velocity slip
    Fatima, Nahid
    Ghodhbani, Refka
    Majeed, Aaqib
    Ijaz, Nouman
    Saleem, Najma
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2025, 150 (01) : 759 - 769
  • [44] Heat transfer analysis of nanofluid based microchannel heat sink
    Zargartalebi, Mohammad
    Azaiez, Jalel
    INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 127 : 1233 - 1242
  • [45] Heat transfer and entropy generation analysis of ternary nanofluid
    Liang, Ruishi
    Hanif, Hanifa
    Song, Jie
    Alzahrani, S. S.
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2024, 11 (06) : 272 - 282
  • [46] Computational investigation of methanol-based hybrid nanofluid flow over a stretching cylinder with Cattaneo-Christov heat flux
    Farooq, Umar
    Liu, Haihu
    Basem, Ali
    Fatima, Nahid
    Alhushaybari, Abdullah
    Imran, Muhammad
    Ben Ali, Naim
    Muhammad, Taseer
    JOURNAL OF COMPUTATIONAL DESIGN AND ENGINEERING, 2024, 11 (04) : 73 - 82
  • [47] Thermal performance of a hybrid nanofluid flow through a stretchable stationary disk featuring the Cattaneo-Christov heat flux theory
    Hafeez, Abdul
    Liu, Dong
    Khalid, Asma
    Zhang, Yongchao
    Yang, Sun Sheng
    CASE STUDIES IN THERMAL ENGINEERING, 2024, 63
  • [48] Cattaneo-Christov heat flux on MHD flow of hybrid nanofluid across stretched cylinder with radiations and Joule heating effects
    Ali, Aamir
    Khatoon, Rukhsana
    Ashraf, Muhammad
    Awais, Muhammad
    WAVES IN RANDOM AND COMPLEX MEDIA, 2022,
  • [49] Entropy optimization and heat flux analysis of Maxwell nanofluid configurated by an exponentially stretching surface with velocity slip
    Nasir, Saleem
    Berrouk, Abdallah S.
    Aamir, Asim
    Shah, Zahir
    SCIENTIFIC REPORTS, 2023, 13 (01)
  • [50] Numerical Analysis of Magnetohydrodynamic and Dissipated Hybrid Casson Nanofluid Flow Over an Unsteady Stretchable Rotating Disk with Cattaneo-Christov Heat Flux Model
    Tulu, Ayele
    JOURNAL OF NANOFLUIDS, 2023, 12 (07) : 1748 - 1760