An Arbitrary Scale Super-Resolution Approach for 3D MR Images via Implicit Neural Representation

被引:38
作者
Wu, Qing [1 ,2 ,3 ]
Li, Yuwei [1 ]
Sun, Yawen [4 ]
Zhou, Yan [4 ]
Wei, Hongjiang [5 ,6 ]
Yu, Jingyi [1 ]
Zhang, Yuyao [1 ,7 ]
机构
[1] ShanghaiTech Univ, Sch Informat Sci & Technol, Shanghai 201210, Peoples R China
[2] Chinese Acad Sci, Shanghai Adv Res Inst, Shanghai, Peoples R China
[3] Univ Chinese Acad Sci, Shanghai, Peoples R China
[4] Shanghai Jiao Tong Univ, Ren Ji Hosp, Sch Med, Dept Radiol, Shanghai 200127, Peoples R China
[5] Shanghai Jiao Tong Univ, Sch Biomed Engn, Shanghai 200127, Peoples R China
[6] Shanghai Jiao Tong Univ, Inst Med Robot, Shanghai 200127, Peoples R China
[7] ShanghaiTech Univ, iHuman Inst, Shanghai 201210, Peoples R China
基金
中国国家自然科学基金;
关键词
Three-dimensional displays; Task analysis; Solid modeling; Superresolution; Image reconstruction; Magnetic resonance imaging; Deep learning; MRI; single image super-resolution; deep learning; implicit neural representation; SPATIAL-RESOLUTION; RECONSTRUCTION;
D O I
10.1109/JBHI.2022.3223106
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
High Resolution (HR) medical images provide rich anatomical structure details to facilitate early and accurate diagnosis. In magnetic resonance imaging (MRI), restricted by hardware capacity, scan time, and patient cooperation ability, isotropic 3-dimensional (3D) HR image acquisition typically requests long scan time and, results in small spatial coverage and low signal-to-noise ratio (SNR). Recent studies showed that, with deep convolutional neural networks, isotropic HR MR images could be recovered from low-resolution (LR) input via single image super-resolution (SISR) algorithms. However, most existing SISR methods tend to approach scale-specific projection between LR and HR images, thus these methods can only deal with fixed up-sampling rates. In this paper, we propose ArSSR, an Arbitrary Scale Super-Resolution approach for recovering 3D HR MR images. In the ArSSR model, the LR image and the HR image are represented using the same implicit neural voxel function with different sampling rates. Due to the continuity of the learned implicit function, a single ArSSR model is able to achieve arbitrary and infinite up-sampling rate reconstructions of HR images from any input LR image. Then the SR task is converted to approach the implicit voxel function via deep neural networks from a set of paired HR and LR training examples. The ArSSR model consists of an encoder network and a decoder network. Specifically, the convolutional encoder network is to extract feature maps from the LR input images and the fully-connected decoder network is to approximate the implicit voxel function. Experimental results on three datasets show that the ArSSR model can achieve state-of-the-art SR performance for 3D HR MR image reconstruction while using a single trained model to achieve arbitrary up-sampling scales.
引用
收藏
页码:1004 / 1015
页数:12
相关论文
共 50 条
[1]   Learning Continuous Image Representation with Local Implicit Image Function [J].
Chen, Yinbo ;
Liu, Sifei ;
Wang, Xiaolong .
2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, :8624-8634
[2]  
Chen YH, 2020, Arxiv, DOI arXiv:2003.01217
[3]   Efficient and Accurate MRI Super-Resolution Using a Generative Adversarial Network and 3D Multi-level Densely Connected Network [J].
Chen, Yuhua ;
Shi, Feng ;
Christodoulou, Anthony G. ;
Xie, Yibin ;
Zhou, Zhengwei ;
Li, Debiao .
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2018, PT I, 2018, 11070 :91-99
[4]  
Chen YH, 2018, I S BIOMED IMAGING, P739
[5]   Learning Implicit Fields for Generative Shape Modeling [J].
Chen, Zhiqin ;
Zhang, Hao .
2019 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2019), 2019, :5932-5941
[6]   SegSRGAN: Super-resolution and segmentation using generative adversarial networks - Application to neonatal brain MRI [J].
Delannoy, Quentin ;
Chi-Hieu Pham ;
Cazorla, Clement ;
Tor-Diez, Carlos ;
Dolle, Guillaume ;
Meunier, Helene ;
Bednarek, Nathalie ;
Fablet, Ronan ;
Passat, Nicolas ;
Rousseau, Francois .
COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 120
[7]   Image Super-Resolution Using Deep Convolutional Networks [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (02) :295-307
[8]   Brain MRI Super-Resolution Using 3D Dilated Convolutional Encoder-Decoder Network [J].
Du, Jinglong ;
Wang, Lulu ;
Liu, Yulu ;
Zhou, Zexun ;
He, Zhongshi ;
Jia, Yuanyuan .
IEEE ACCESS, 2020, 8 :18938-18950
[9]   Super-resolution reconstruction of single anisotropic 3D MR images using residual convolutional neural network [J].
Du, Jinglong ;
He, Zhongshi ;
Wang, Lulu ;
Gholipour, Ali ;
Zhou, Zexun ;
Chen, Dingding ;
Jia, Yuanyuan .
NEUROCOMPUTING, 2020, 392 :209-220
[10]   An automated framework for localization, segmentation and super-resolution reconstruction of fetal brain MRI [J].
Ebner, Michael ;
Wang, Guotai ;
Li, Wenqi ;
Aertsen, Michael ;
Patel, Premal A. ;
Aughwane, Rosalind ;
Melbourne, Andrew ;
Doel, Tom ;
Dymarkowski, Steven ;
De Coppi, Paolo ;
David, Anna L. ;
Deprest, Jan ;
Ourselin, Sebastien ;
Vercauteren, Tom .
NEUROIMAGE, 2020, 206