Detecting pediatric wrist fractures using deep-learning-based object detection

被引:24
作者
Zech, John R. [1 ]
Carotenuto, Giuseppe [2 ]
Igbinoba, Zenas [1 ]
Tran, Clement Vinh [1 ]
Insley, Elena [3 ]
Baccarella, Alyssa [4 ]
Wong, Tony T. [1 ]
机构
[1] Columbia Univ, New York Presbyterian Hosp, Dept Radiol, Irving Med Ctr, 622 W 168th St, New York, NY 10032 USA
[2] Univ Calif San Diego, Dept Radiol, San Diego, CA USA
[3] Columbia Univ, Morgan Stanley Childrens Hosp New York, Dept Pediat, Irving Med Ctr, New York, NY USA
[4] Childrens Hosp Philadelphia, Div Gastroenterol, Philadelphia, PA USA
关键词
Artificial intelligence; Bone; Buckle fracture; Children; Convolutional neural network; Deep learning; Radiography; Wrist; DIAGNOSTIC ERRORS; RADIOGRAPHS;
D O I
10.1007/s00247-023-05588-8
中图分类号
R72 [儿科学];
学科分类号
100202 ;
摘要
BackgroundMissed fractures are the leading cause of diagnostic error in the emergency department, and fractures of pediatric bones, particularly subtle wrist fractures, can be misidentified because of their varying characteristics and responses to injury.ObjectiveThis study evaluated the utility of an object detection deep learning framework for classifying pediatric wrist fractures as positive or negative for fracture, including subtle buckle fractures of the distal radius, and evaluated the performance of this algorithm as augmentation to trainee radiograph interpretation.Materials and methodsWe obtained 395 posteroanterior wrist radiographs from unique pediatric patients (65% positive for fracture, 30% positive for distal radial buckle fracture) and divided them into train (n = 229), tune (n = 41) and test (n = 125) sets. We trained a Faster R-CNN (region-based convolutional neural network) deep learning object-detection model. Two pediatric and two radiology residents evaluated radiographs initially without the artificial intelligence (AI) assistance, and then subsequently with access to the bounding box generated by the Faster R-CNN model.ResultsThe Faster R-CNN model demonstrated an area under the curve (AUC) of 0.92 (95% confidence interval [CI] 0.87-0.97), accuracy of 88% (n = 110/125; 95% CI 81-93%), sensitivity of 88% (n = 70/80; 95% CI 78-94%) and specificity of 89% (n = 40/45, 95% CI 76-96%) in identifying any fracture and identified 90% of buckle fractures (n = 35/39, 95% CI 76-97%). Access to Faster R-CNN model predictions significantly improved average resident accuracy from 80 to 93% in detecting any fracture (P < 0.001) and from 69 to 92% in detecting buckle fracture (P < 0.001). After accessing AI predictions, residents significantly outperformed AI in cases of disagreement (73% resident correct vs. 27% AI, P = 0.002).ConclusionAn object-detection-based deep learning approach trained with only a few hundred examples identified radiographs containing pediatric wrist fractures with high accuracy. Access to model predictions significantly improved resident accuracy in diagnosing these fractures.
引用
收藏
页码:1125 / 1134
页数:10
相关论文
共 38 条
[1]   Detection and localization of distal radius fractures: Deep learning system versus radiologists [J].
Bluethgen, Christian ;
Becker, Anton S. ;
de Martini, Ilaria Vittoria ;
Meier, Andreas ;
Martini, Katharina ;
Frauenfelder, Thomas .
EUROPEAN JOURNAL OF RADIOLOGY, 2020, 126
[2]  
Boski M, 2017, 2017 10TH INTERNATIONAL WORKSHOP ON MULTIDIMENSIONAL (ND) SYSTEMS (NDS)
[3]   Automatic Detection of Wrist Fractures From Posteroanterior and Lateral Radiographs: A Deep Learning-Based Approach [J].
Ebsim, Raja ;
Naqvi, Jawad ;
Cootes, Timothy F. .
COMPUTATIONAL METHODS AND CLINICAL APPLICATIONS IN MUSCULOSKELETAL IMAGING, MSKI 2018, 2019, 11404 :114-125
[4]   Artificial Intelligence Algorithm Improves Radiologist Performance in Skeletal Age Assessment: A Prospective Multicenter Randomized Controlled Trial [J].
Eng, David K. ;
Khandwala, Nishith B. ;
Long, Jin ;
Fefferman, Nancy R. ;
Lala, Shailee, V ;
Strubel, Naomi A. ;
Milla, Sarah S. ;
Filice, Ross W. ;
Sharp, Susan E. ;
Towbin, Alexander J. ;
Francavilla, Michael L. ;
Kaplan, Summer L. ;
Ecklund, Kirsten ;
Prabhu, Sanjay P. ;
Dillon, Brian J. ;
Everist, Brian M. ;
Anton, Christopher G. ;
Bittman, Mark E. ;
Dennis, Rebecca ;
Larson, David B. ;
Seekins, Jayne M. ;
Silva, Cicero T. ;
Zandieh, Arash R. ;
Langlotz, Curtis P. ;
Lungren, Matthew P. ;
Halabi, Safwan S. .
RADIOLOGY, 2021, 301 (03) :692-699
[5]   Short-Term Outcomes of Screening Mammography Using Computer-Aided Detection A Population-Based Study of Medicare Enrollees [J].
Fenton, Joshua J. ;
Xing, Guibo ;
Elmore, Joann G. ;
Bang, Heejung ;
Chen, Steven L. ;
Lindfors, Karen K. ;
Baldwin, Laura-Mae .
ANNALS OF INTERNAL MEDICINE, 2013, 158 (08) :580-+
[6]   Frequently Missed Fractures in Pediatric Trauma A Pictorial Review of Plain Film Radiography [J].
George, Michael P. ;
Bixby, Sarah .
RADIOLOGIC CLINICS OF NORTH AMERICA, 2019, 57 (04) :843-+
[7]   Improving Radiographic Fracture Recognition Performance and Efficiency Using Artificial Intelligence [J].
Guermazi, Ali ;
Tannoury, Chadi ;
Kompel, Andrew J. ;
Murakami, Akira M. ;
Ducarouge, Alexis ;
Gillibert, Andre ;
Li, Xinning ;
Tournier, Antoine ;
Lahoud, Youmna ;
Jarraya, Mohamed ;
Lacave, Elise ;
Rahimi, Hamza ;
Pourchot, Alois ;
Parisien, Robert L. ;
Merritt, Alexander C. ;
Comeau, Douglas ;
Regnard, Nor-Eddine ;
Hayashi, Daichi .
RADIOLOGY, 2022, 302 (03) :627-636
[8]   Diagnostic errors in an accident and emergency department [J].
Guly, HR .
EMERGENCY MEDICINE JOURNAL, 2001, 18 (04) :263-269
[9]   Errors in fracture diagnoses in the emergency deparment - Characteristics of patients and diurnal variation [J].
Hallas P. ;
Ellingsen T. .
BMC Emergency Medicine, 6 (1)
[10]   Diagnostic errors by radiology residents in interpreting pediatric radiographs in an emergency setting [J].
Halsted, MJ ;
Kumar, H ;
Paquin, JJ ;
Poe, SA ;
Bean, JA ;
Racadio, JM ;
Strife, JL ;
Donnelly, LF .
PEDIATRIC RADIOLOGY, 2004, 34 (04) :331-336