Remote sensing retrieval of inland water quality parameters using Sentinel-2 and multiple machine learning algorithms

被引:47
|
作者
Tian, Shang [1 ]
Guo, Hongwei [1 ]
Xu, Wang [2 ]
Zhu, Xiaotong [1 ]
Wang, Bo [1 ]
Zeng, Qinghuai [2 ]
Mai, Youquan [2 ]
Huang, Jinhui Jeanne [1 ]
机构
[1] Nankai Univ, Coll Environm Sci & Engn Sino Canada Joint R&D Ct, Tianjin, Peoples R China
[2] Shenzhen Environm Monitoring Ctr Stn, Shenzhen, Peoples R China
基金
国家重点研发计划;
关键词
Remote sensing; Water quality; Machine learning; Non-optically active parameters; Sentinel-2; Inland waters; CHLOROPHYLL-A; COASTAL; RESERVOIR; COLOR; OCEAN; LANDSAT; ERROR;
D O I
10.1007/s11356-022-23431-9
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Remote sensing has long been an effective method for water quality monitoring because of its advantages such as high coverage and low consumption. For non-optically active parameters, traditional empirical and analytical methods cannot achieve quantitative retrieval. Machine learning has been gradually used for water quality retrieval due to its ability to capture the potential relationship between water quality parameters and satellite images. This study is based on Sentinel-2 images and compared the ability of four machine learning algorithms (eXtreme Gradient Boosting (XGBoost), Support Vector Regression (SVR), Random Forest (RF), and Artificial Neural Network (ANN)) to retrieve chlorophyll-a (Chl-a), dissolved oxygen (DO), and ammonia-nitrogen (NH3-N) for inland reservoirs. The results indicated that XGBoost outperformed the other three algorithms. We used XGBoost to reconstruct the spatial-temporal patterns of Chl-a, DO, and NH3-N for the period of 2018-2020 and further analyzed the interannual, seasonal, and spatial variation characteristics. This study provides an efficient and practical way for optically and non-optically active parameters monitoring and management at the regional scale.
引用
收藏
页码:18617 / 18630
页数:14
相关论文
共 50 条
  • [41] Chlorophyll-a and total suspended solids retrieval and mapping using Sentinel-2A and machine learning for inland waters
    Saberioon, Mohammadmehdi
    Brom, Jakub
    Nedbal, Vaclav
    Soucek, Pavel
    Cisar, Petr
    ECOLOGICAL INDICATORS, 2020, 113
  • [42] Seamless retrievals of chlorophyll-a from Sentinel-2 (MSI) and Sentinel-3 (OLCI) in inland and coastal waters: A machine-learning approach
    Pahlevan, Nima
    Smith, Brandon
    Schalles, John
    Binding, Caren
    Cao, Zhigang
    Ma, Ronghua
    Alikas, Krista
    Kangro, Kersti
    Gurlin, Daniela
    Nguyen Ha
    Matsushita, Bunkei
    Moses, Wesley
    Greb, Steven
    Lehmann, Moritz K.
    Ondrusek, Michael
    Oppelt, Natascha
    Stumpf, Richard
    REMOTE SENSING OF ENVIRONMENT, 2020, 240
  • [43] MACHINE LEARNING METHODS FOR WATER QUALITY MONITORING OVER FINGER LAKES USING SENTINEL-2
    Khan, Rabia Munsaf
    Salehi, Bahram
    Mahdianpari, Masoud
    2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 6316 - 6319
  • [44] TEMPORALLY TRANSFERABLE MACHINE LEARNING MODEL FOR TOTAL SUSPENDED MATTER RETRIEVAL FROM SENTINEL-2
    Niroumand-Jadidi, Milad
    Bovolo, Francesca
    XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 5-3 : 339 - 345
  • [45] Mapping cropland extent using sentinel-2 datasets and machine learning algorithms for an agriculture watershed
    Savitha, Chirasmayee
    Talari, Reshma
    SMART AGRICULTURAL TECHNOLOGY, 2023, 4
  • [46] A Comparative Study on Machine Learning Algorithms for Geochemical Prediction Using Sentinel-2 Reflectance Spectroscopy
    Mahboob, Muhammad Ahsan
    Celik, Turgay
    Gen, Bekir
    JOURNAL OF MINING AND ENVIRONMENT, 2021, 12 (04): : 987 - 1001
  • [47] Comprehensive Review on Application of Machine Learning Algorithms for Water Quality Parameter Estimation Using Remote Sensing Data
    Wagle, Nimisha
    Acharya, Tri Dev
    Lee, Dong Ha
    SENSORS AND MATERIALS, 2020, 32 (11) : 3879 - 3892
  • [48] Crop type mapping using LiDAR, Sentinel-2 and aerial imagery with machine learning algorithms
    Prins, Adriaan Jacobus
    Van Niekerk, Adriaan
    GEO-SPATIAL INFORMATION SCIENCE, 2021, 24 (02) : 215 - 227
  • [49] Water Quality Retrieval from PRISMA Hyperspectral Images: First Experience in a Turbid Lake and Comparison with Sentinel-2
    Niroumand-Jadidi, Milad
    Bovolo, Francesca
    Bruzzone, Lorenzo
    REMOTE SENSING, 2020, 12 (23) : 1 - 21
  • [50] Modelling inland Arctic bathymetry from space using cloud-based machine learning and Sentinel-2
    Merchant, Michael A.
    ADVANCES IN SPACE RESEARCH, 2023, 72 (10) : 4256 - 4271