p-Variation of CUSUM process and testing change in the mean

被引:2
作者
Danielius, Tadas [1 ]
Rackauskas, Alfredas [1 ]
机构
[1] Vilnius Univ, Inst Appl Math, Naugarduko St 24, LT-03225 Vilnius, Lithuania
关键词
Change-point; CUSUM process; p-Variation;
D O I
10.1080/03610918.2020.1844899
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose and investigate a new test of model instability in the mean. The test is based on p-variation of stepwise CUSUM process. We establish a limiting distribution of the test statistics under null as well as under contiguous alternative.
引用
收藏
页码:43 / 55
页数:13
相关论文
共 13 条
[1]  
Brodsky B. E., 1993, NONPARAMETRIC METHOD
[2]  
BROWN RL, 1975, J ROY STAT SOC B MET, V37, P149
[3]   Computation of <it><bold>p</it></bold>-variation [J].
Butkus, Vygantas ;
Norvaisa, Rimas .
LITHUANIAN MATHEMATICAL JOURNAL, 2018, 58 (04) :360-378
[4]  
Chen J., 2012, Parametric statistical change point analysis: with applications to genetics, medicine, and finance, Vsecond, DOI [10.1007/978-0-8176-4801-5, DOI 10.1007/978-0-8176-4801-5]
[5]   PROBLEM OF NILE - CONDITIONAL SOLUTION TO A CHANGEPOINT PROBLEM [J].
COBB, GW .
BIOMETRIKA, 1978, 65 (02) :243-251
[6]  
Csorgo M., 1997, Limit Theorems in Change-Point Analysis
[7]  
HINKLEY DV, 1970, BIOMETRIKA, V57, P1
[8]   Optimal Detection of Changepoints With a Linear Computational Cost [J].
Killick, R. ;
Fearnhead, P. ;
Eckley, I. A. .
JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2012, 107 (500) :1590-1598
[9]  
Killick R, 2014, J STAT SOFTW, V58, P1
[10]   Convergence in law of partial sum processes in p-variation norm [J].
Norvaisa, R. ;
Rackauskas, A. .
LITHUANIAN MATHEMATICAL JOURNAL, 2008, 48 (02) :212-227