Graphs with distinguishing sets of size k

被引:0
|
作者
Azhar, Muhammad Naeem [1 ]
Fazil, Muhammad [2 ]
Javaid, Imran [3 ]
Murtaza, Muhammad [4 ]
机构
[1] Islamia Univ Bahawalpur, Dept Math, Bahawalpur 63100, Pakistan
[2] Bahauddin Zakariya Univ, Dept Basic Sci & Humanities, Multan 60800, Pakistan
[3] Bahauddin Zakariya Univ, CASPAM, Multan 60800, Pakistan
[4] Fed Govt Sir Syed Coll, Rawalpindi, Pakistan
关键词
Induced subgraph; Metric dimension; Metric dimension of size k; Resolving set; Resolving set of size k; RESOLVABILITY;
D O I
10.1016/j.kjs.2023.12.008
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The size of a resolving set R of a non-trivial connected graph Gamma of order n >= 2 is the number of edges in the induced subgraph <R>. The minimum cardinality of a resolving set of size k of graph Gamma is called the metric dimension of size k, denoted by beta((k))(Gamma). We study the existence of resolving sets of size k in some families of graphs and investigate their properties. We find bounds on the metric dimension of size k of a graph Gamma. We give the necessary condition for the metric dimension of size k and size (k + 1) of a graph Gamma, to satisfy the inequality beta((k+1))(Gamma) - beta((k))(Gamma) <= 1. We will disprove a conjecture on bounds of the metric dimension of size k. For every positive integers k, l, and n such that k + 1 <= l <= n, we give a realizable result of a graph Gamma of order n and l = beta((k))(Gamma).
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Unavoidable induced subgraphs in large graphs with no homogeneous sets
    Chudnovsky, Maria
    Kim, Ringi
    Oum, Sang-il
    Seymour, Paul
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2016, 118 : 1 - 12
  • [42] 2-Size Resolvability in Graphs
    Salman, M.
    Javaid, I.
    Chaudhry, M. A.
    APPLIED MATHEMATICS & INFORMATION SCIENCES, 2012, 6 (02): : 371 - 376
  • [43] On k-dimensional graphs and their bases
    Peter S. Buczkowski
    Gary Chartrand
    Christopher Poisson
    Ping Zhang
    Periodica Mathematica Hungarica, 2003, 46 (1) : 9 - 15
  • [44] On The (k, t)-Metric Dimension Of Graphs
    Estrada-Moren, A.
    Yero, I. G.
    Rodriguez-Velazquez, J. A.
    COMPUTER JOURNAL, 2021, 64 (05) : 707 - 720
  • [45] The k-in-a-tree problem for graphs of girth at least k
    Liu, W.
    Trotignon, N.
    DISCRETE APPLIED MATHEMATICS, 2010, 158 (15) : 1644 - 1649
  • [46] Computing the k-metric dimension of graphs
    Yero, Ismael G.
    Estrada-Moreno, Alejandro
    Rodriguez-Velazquez, Juan A.
    APPLIED MATHEMATICS AND COMPUTATION, 2017, 300 : 60 - 69
  • [47] MINIMAL DOUBLY RESOLVING SETS AND THE STRONG METRIC DIMENSION OF HAMMING GRAPHS
    Kratica, Jozef
    Kovacevic-Vujcic, Vera
    Cangalovic, Mirjana
    Stojanovic, Milica
    APPLICABLE ANALYSIS AND DISCRETE MATHEMATICS, 2012, 6 (01) : 63 - 71
  • [48] On Maximal Det-Independent (Res-Independent) Sets in Graphs
    Muhammad Zill-E-Shams
    Usman Salman
    Graphs and Combinatorics, 2022, 38
  • [49] A note on k-metric dimensional graphs
    Corregidor, Samuel G.
    Martinez-Perez, Alvaro
    DISCRETE APPLIED MATHEMATICS, 2021, 289 : 523 - 533
  • [50] On graphs with no induced subdivision of K4
    Leveque, Benjamin
    Maffray, Frederic
    Trotignon, Nicolas
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2012, 102 (04) : 924 - 947