Pinus pinaster Diameter, Height, and Volume Estimation Using Mask-RCNN

被引:0
作者
Malta, Ana [1 ,2 ]
Lopes, Jose [3 ]
Salas-Gonzalez, Raul [1 ,4 ]
Fidalgo, Beatriz [1 ,4 ]
Farinha, Torres [1 ,3 ]
Mendes, Mateus [1 ,3 ]
机构
[1] ISEC, RCM2 Res Ctr Asset Management & Syst Engn, IPC, Rua Pedro Nunes, P-3030199 Coimbra, Portugal
[2] Univ Beira Interior, CISE Electromechatron Syst Res Ctr, P-6201001 Covilha, Portugal
[3] Coimbra Inst Engn, Polytech Inst Coimbra, Rua Pedro Nunes Quinta Nora, P-3030199 Coimbra, Portugal
[4] Polytech Inst Coimbra, Coimbra Agr Sch, P-3045601 Coimbra, Portugal
关键词
Pinus pinaster; wood volume; pine tree volume; Mask R-CNN; FOREST;
D O I
10.3390/su152416814
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Pinus pinaster, commonly called the maritime pine, is a vital species in Mediterranean forests. Its ability to thrive in the local climate and rapid growth make it an essential resource for wood production and reforestation efforts. Accurately estimating the volume of wood within a pine forest is of great significance to the wood industry. The traditional process is either a rough estimation without measurements or a time-consuming process based on manual measurements and calculations. This article presents a method for determining a tree's diameter, total height, and volume based on a photograph. The method involves placing reference targets of known dimensions on the trees. A deep learning neural network is used to extract the tree trunk and the targets from the background, and the dimensions of the trunk are estimated based on the dimensions of the targets. The results indicate less than 10% estimation errors for diameter, height, and volume in general. The proposed methodology automates the estimation of the dendrometric characteristics of trees, reducing field time consumed in a forest inventory and without the need to use nonprofessional instruments.
引用
收藏
页数:17
相关论文
共 35 条
  • [1] The changing culture of silviculture
    Achim, Alexis
    Moreau, Guillaume
    Coops, Nicholas C.
    Axelson, Jodi N.
    Barrette, Julie
    Bedard, Steve
    Byrne, Kenneth E.
    Caspersen, John
    Dick, Adam R.
    D'Orangeville, Loic
    Drolet, Guillaume
    Eskelson, Bianca N., I
    Filipescu, Cosmin N.
    Flamand-Hubert, Maude
    Goodbody, Tristan R. H.
    Griess, Verena C.
    Hagerman, Shannon M.
    Keys, Kevin
    Lafleur, Benoit
    Girona, Miguel Montoro
    Morris, Dave M.
    Nock, Charles A.
    Pinno, Bradley D.
    Raymond, Patricia
    Roy, Vincent
    Schneider, Robert
    Soucy, Michel
    Stewart, Bruce
    Sylvain, Jean-Daniel
    Taylor, Anthony R.
    Thiffault, Evelyne
    Thiffault, Nelson
    Vepakomma, Udaya
    White, Joanne C.
    [J]. FORESTRY, 2022, 95 (02): : 143 - 152
  • [2] Alegria C., 2016, Folia Forestalia Polonica. Series A, Forestry, V58, P198
  • [3] [Anonymous], ESIR How Mask R-CNN Works?
  • [4] Bharati Puja, 2020, Computational Intelligence in Pattern Recognition. Proceedings of CIPR 2019. Advances in Intelligent Systems and Computing (AISC 999), P657, DOI 10.1007/978-981-13-9042-5_56
  • [5] Terrestrial laser scanning in forest ecology: Expanding the horizon
    Calders, Kim
    Adams, Jennifer
    Armston, John
    Bartholomeus, Harm
    Bauwens, Sebastien
    Bentley, Lisa Patrick
    Chave, Jerome
    Danson, F. Mark
    Demol, Miro
    Disney, Mathias
    Gaulton, Rachel
    Moorthy, Sruthi M. Krishna
    Levick, Shaun R.
    Saarinen, Ninni
    Schaaf, Crystal
    Stovall, Atticus
    Terryn, Louise
    Wilkes, Phil
    Verbeeck, Hans
    [J]. REMOTE SENSING OF ENVIRONMENT, 2020, 251
  • [6] Canadas Maria João, 2014, Anál. Social, P346
  • [7] Centro PINUS, A Fileira do Pinho em 2022. Indicadores da Fileira do Pinho
  • [8] Non-Destructive Fast Estimation of Tree Stem Height and Volume Using Image Processing
    Coelho, Joao
    Fidalgo, Beatriz
    Crisostomo, Manuel M.
    Salas-Gonzalez, Raul
    Coimbra, A. Paulo
    Mendes, Mateus
    [J]. SYMMETRY-BASEL, 2021, 13 (03): : 1 - 19
  • [9] Modelling lidar-derived estimates of forest attributes over space and time: A review of approaches and future trends
    Coops, Nicholas C.
    Tompalski, Piotr
    Goodbody, Tristan R. H.
    Queinnec, Martin
    Luther, Joan E.
    Bolton, Douglas K.
    White, Joanne C.
    Wulder, Michael A.
    van Lier, Oliver R.
    Hermosilla, Txomin
    [J]. REMOTE SENSING OF ENVIRONMENT, 2021, 260
  • [10] Artificial neural networks as an alternative tool in pine bark volume estimation
    Diamantopoulou, MJ
    [J]. COMPUTERS AND ELECTRONICS IN AGRICULTURE, 2005, 48 (03) : 235 - 244