Multivariable Risk Modelling and Survival Analysis with Machine Learning in SARS-CoV-2 Infection

被引:3
作者
Ciarmiello, Andrea [1 ]
Tutino, Francesca [1 ]
Giovannini, Elisabetta [1 ]
Milano, Amalia [2 ]
Barattini, Matteo [3 ]
Yosifov, Nikola [1 ]
Calvi, Debora [4 ]
Setti, Maurizo [5 ]
Sivori, Massimiliano [6 ]
Sani, Cinzia [7 ]
Bastreri, Andrea [8 ]
Staffiere, Raffaele [9 ]
Stefanini, Teseo [3 ]
Artioli, Stefania [4 ]
Giovacchini, Giampiero [1 ]
机构
[1] Osped Civile St Andrea, Nucl Med Unit, Via Vittorio Veneto 170, I-19124 La Spezia, Italy
[2] Osped Civile St Andrea, Oncol Unit, I-19124 La Spezia, Italy
[3] Osped Civile St Andrea, Radiol Unit, I-19124 La Spezia, Italy
[4] Osped Civile St Andrea, Infectius Dis Unit, I-19124 La Spezia, Italy
[5] Osped San Bartolomeo, Internal Med Unit, I-19138 Sarzana, Italy
[6] Osped Civile St Andrea, Pneumol Unit, I-19124 La Spezia, Italy
[7] Osped Civile St Andrea, Intens Care Unit, I-19124 La Spezia, Italy
[8] Osped Civile St Andrea, Emergency Dept, I-19124 La Spezia, Italy
[9] Osped San Bartolomeo, Emergency Dept, I-19138 Sarzana, Italy
关键词
SARS-CoV-2; machine learning; radiomics; CT; survival; ARTIFICIAL-INTELLIGENCE; COVID-19; MORTALITY; CT; PREDICTION; RADIOMICS;
D O I
10.3390/jcm12227164
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Aim: To evaluate the performance of a machine learning model based on demographic variables, blood tests, pre-existing comorbidities, and computed tomography(CT)-based radiomic features to predict critical outcome in patients with acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Methods: We retrospectively enrolled 694 SARS-CoV-2-positive patients. Clinical and demographic data were extracted from clinical records. Radiomic data were extracted from CT. Patients were randomized to the training (80%, n = 556) or test (20%, n = 138) dataset. The training set was used to define the association between severity of disease and comorbidities, laboratory tests, demographic, and CT-based radiomic variables, and to implement a risk-prediction model. The model was evaluated using the C statistic and Brier scores. The test set was used to assess model prediction performance. Results: Patients who died (n = 157) were predominantly male (66%) over the age of 50 with median (range) C-reactive protein (CRP) = 5 [1, 37] mg/dL, lactate dehydrogenase (LDH) = 494 [141, 3631] U/I, and D-dimer = 6.006 [168, 152.015] ng/mL. Surviving patients (n = 537) had median (range) CRP = 3 [0, 27] mg/dL, LDH = 484 [78, 3.745] U/I, and D-dimer = 1.133 [96, 55.660] ng/mL. The strongest risk factors were D-dimer, age, and cardiovascular disease. The model implemented using the variables identified using the LASSO Cox regression analysis classified 90% of non-survivors as high-risk individuals in the testing dataset. In this sample, the estimated median survival in the high-risk group was 9 days (95% CI; 9-37), while the low-risk group did not reach the median survival of 50% (p < 0.001). Conclusions: A machine learning model based on combined data available on the first days of hospitalization (demographics, CT-radiomics, comorbidities, and blood biomarkers), can identify SARS-CoV-2 patients at risk of serious illness and death.
引用
收藏
页数:14
相关论文
共 54 条
[1]   Correlation of Chest CT and RT-PCR Testing for Coronavirus Disease 2019 (COVID-19) in China: A Report of 1014 Cases [J].
Ai, Tao ;
Yang, Zhenlu ;
Hou, Hongyan ;
Zhan, Chenao ;
Chen, Chong ;
Lv, Wenzhi ;
Tao, Qian ;
Sun, Ziyong ;
Xia, Liming .
RADIOLOGY, 2020, 296 (02) :E32-E40
[2]   The Effect of Age on Mortality in Patients With COVID-19: A Meta-Analysis With 611,583 Subjects [J].
Bonanad, Clara ;
Garcia-Blas, Sergio ;
Tarazona-Santabalbina, Francisco ;
Sanchis, Juan ;
Bertomeu-Gonzalez, Vicente ;
Facila, Lorenzo ;
Ariza, Albert ;
Nunez, Julio ;
Cordero, Alberto .
JOURNAL OF THE AMERICAN MEDICAL DIRECTORS ASSOCIATION, 2020, 21 (07) :915-918
[3]   Novel Coronavirus Infection (COVID-19) in Humans: A Scoping Review and Meta-Analysis [J].
Borges do Nascimento, Israel Junior ;
Cacic, Nensi ;
Abdulazeem, Hebatullah Mohamed ;
von Groote, Thilo Caspar ;
Jayarajah, Umesh ;
Weerasekara, Ishanka ;
Esfahani, Meisam Abdar ;
Civile, Vinicius Tassoni ;
Marusic, Ana ;
Jeroncic, Ana ;
Carvas Junior, Nelson ;
Pericic, Tina Poklepovic ;
Zakarija-Grkovic, Irena ;
Meirelles Guimaraes, Silvana Mangeon ;
Bragazzi, Nicola Luigi ;
Bjorklund, Maria ;
Sofi-Mahmudi, Ahmad ;
Altujjar, Mohammad ;
Tian, Maoyi ;
Cespedes Arcani, Diana Maria ;
O'Mathuna, Donal P. ;
Marcolino, Milena Soriano .
JOURNAL OF CLINICAL MEDICINE, 2020, 9 (04)
[4]   Distinct Features of Vascular Diseases in COVID-19 [J].
Ceasovschih, Alexandr ;
Sorodoc, Victorita ;
Shor, Annabelle ;
Haliga, Raluca Ecaterina ;
Roth, Lynn ;
Lionte, Catalina ;
Aursulesei, Viviana Onofrei ;
Sirbu, Oana ;
Culis, Nicolae ;
Shapieva, Albina ;
Khokhar, Mohammed A. R. Tahir ;
Statescu, Cristian ;
Sascau, Radu A. ;
Coman, Adorata Elena ;
Stoica, Alexandra ;
Grigorescu, Elena-Daniela ;
Banach, Maciej ;
Thomopoulos, Costas ;
Sorodoc, Laurentiu .
JOURNAL OF INFLAMMATION RESEARCH, 2023, 16 :2783-2800
[5]   Machine learning radiomics for prediction of survival in non-small cell lung cancer patients studied with PET/CT and FDG [J].
Ciarmiello, A. ;
Giovannini, E. ;
Florimonte, L. ;
Bonatto, E. ;
Bareggi, C. ;
Milano, A. ;
Aschele, C. ;
Castellani, M. .
ANNALS OF ONCOLOGY, 2021, 32 :S926-S926
[6]   Machine Learning Model to Predict Diagnosis of Mild Cognitive Impairment by Using Radiomic and Amyloid Brain PET [J].
Ciarmiello, Andrea ;
Giovannini, Elisabetta ;
Pastorino, Sara ;
Ferrando, Ornella ;
Foppiano, Franca ;
Mannironi, Antonio ;
Tartaglione, Antonio ;
Giovacchini, Giampiero .
CLINICAL NUCLEAR MEDICINE, 2023, 48 (01) :1-7
[7]   Well-aerated Lung on Admitting Chest CT to Predict Adverse Outcome in COVID-19 Pneumonia [J].
Colombi, Davide ;
Bodini, Flavio C. ;
Petrini, Marcello ;
Maffi, Gabriele ;
Morelli, Nicola ;
Milanese, Gianluca ;
Silva, Mario ;
Sverzellati, Nicola ;
Michieletti, Emanuele .
RADIOLOGY, 2020, 296 (02) :E86-E96
[8]   Emergence in southern France of a new SARS-CoV-2 variant harbouring both N501Y and E484K substitutions in the spike protein [J].
Colson, Philippe ;
Delerce, Jeremy ;
Burel, Emilie ;
Dahan, Jordan ;
Jouffret, Agnes ;
Fenollar, Florence ;
Yahi, Nouara ;
Fantini, Jacques ;
La Scola, Bernard ;
Raoult, Didier .
ARCHIVES OF VIROLOGY, 2022, 167 (04) :1185-1190
[9]   Optimally splitting cases for training and testing high dimensional classifiers [J].
Dobbin, Kevin K. ;
Simon, Richard M. .
BMC MEDICAL GENOMICS, 2011, 4
[10]   Quantitative assessment of lung involvement on chest CT at admission: Impact on hypoxia and outcome in COVID-19 patients [J].
Esposito, Antonio ;
Palmisano, Anna ;
Cao, Roberta ;
Rancoita, Paola ;
Landoni, Giovanni ;
Grippaldi, Daniele ;
Boccia, Edda ;
Cosenza, Michele ;
Messina, Antonio ;
La Marca, Salvatore ;
Palumbo, Diego ;
Di Serio, Clelia ;
Spessot, Marzia ;
Tresoldi, Moreno ;
Scarpellini, Paolo ;
Ciceri, Fabio ;
Zangrillo, Alberto ;
De Cobelli, Francesco .
CLINICAL IMAGING, 2021, 77 (77) :194-201