Integrability, lump solutions, breather solutions and hybrid solutions for the (2+1)-dimensional variable coefficient Korteweg-de Vries equation

被引:10
作者
Chu, Jingyi [1 ]
Chen, Xin [1 ]
Liu, Yaqing [1 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
基金
北京市自然科学基金; 中国国家自然科学基金;
关键词
Variable coefficient Korteweg-de Vries equation; Soliton solution; Bilinear ansatz method; Lax pair; BACKLUND TRANSFORMATION; KDV EQUATION; SOLITON; WAVE; MECHANICS;
D O I
10.1007/s11071-023-09062-w
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
This paper focuses on the integrability and exact solutions of a (2+1)-dimensional variable coefficient Korteweg-de Vries equation. The bilinear form, Backlund transformations, and Lax pair of this equation are obtained using the Bell polynomial method. Soliton solutions, including lump solitons, breather solitons, and hybrid solutions, are constructed by assuming different auxiliary functions in the bilinear ansatz method. Additionally, the soliton solutions are presented as figures for different variable coefficient functions and undetermined items under appropriate parameter choices. The Backlund transformations also lead to Lax pair and the infinity conservation laws that ensure the integrability of the nonlinear system under study.
引用
收藏
页码:619 / 634
页数:16
相关论文
共 43 条
[31]  
Tian B, 2001, EUR PHYS J B, V22, P351
[32]   A new Backlund transformation and multi-soliton solutions to the KdV equation with general variable coefficients [J].
Wang, ML ;
Wang, YM .
PHYSICS LETTERS A, 2001, 287 (3-4) :211-216
[33]   Exotic vector freak waves in the nonlocal nonlinear Schr?dinger equation [J].
Wang, Xiu-Bin ;
Tian, Shou-Fu .
PHYSICA D-NONLINEAR PHENOMENA, 2022, 442
[34]   Soliton fusion and fission in a generalized variable-coefficient fifth-order Korteweg-de Vries equation in fluids [J].
Wang, Yu-Feng ;
Tian, Bo ;
Jiang, Yan .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 292 :448-456
[36]   Painleve analysis, auto-Backlund transformation and new analytic solutions for a generalized variable-coefficient Korteweg-de Vries (KdV) equation [J].
Wei, Guang-Mei ;
Gao, Yi-Tian ;
Hu, Wei ;
Zhang, Chun-Yi .
EUROPEAN PHYSICAL JOURNAL B, 2006, 53 (03) :343-350
[37]   Painleve integrability of a generalized fifth-order KdV equation with variable coefficients: Exact solutions and their interactions [J].
Xu Gui-Qiong .
CHINESE PHYSICS B, 2013, 22 (05)
[38]   Novel characteristics of lump and lump-soliton interaction solutions to the generalized variable-coefficient Kadomtsev-Petviashvili equation [J].
Xu, Hui ;
Ma, Zhengyi ;
Fei, Jinxi ;
Zhu, Quanyong .
NONLINEAR DYNAMICS, 2019, 98 (01) :551-560
[39]   Darboux transformation, soliton solutions of the variable coefficient nonlocal modified Korteweg-de Vries equation [J].
Zhang, Feng ;
Hu, Yuru ;
Xin, Xiangpeng ;
Liu, Hanze .
COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (04)
[40]   A generalized auxiliary equation method and its application to (2+1)-dimensional Korteweg-de Vries equations [J].
Zhang, Sheng .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2007, 54 (7-8) :1028-1038