Multiscale fire image detection method based on CNN and Transformer

被引:1
|
作者
Wu, Shengbao [1 ]
Sheng, Buyun [1 ,2 ]
Fu, Gaocai [1 ]
Zhang, Daode [2 ]
Jian, Yuchao [1 ]
机构
[1] Wuhan Univ Technol, Sch Mech & Elect Engn, Wuhan 430070, Peoples R China
[2] Hubei Univ Technol, Sch Mech Engn, Wuhan 430068, Peoples R China
关键词
Deep learning; Fire detection; CNN; Multiscale feature extraction; Transformer; Hybrid model; Attention mechanism; CONVOLUTIONAL NEURAL-NETWORKS; REAL-TIME FIRE; VIDEO FIRE; COLOR; SURVEILLANCE;
D O I
10.1007/s11042-023-17482-4
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Fire is one of the most harmful hazards that affect daily life. The existing fire detection methods have the problems of large computation, slow detection speed, and low detection accuracy to varying degrees, and do not achieve a better trade-off between model complexity, accuracy, and detection speed. In this paper, a multiscale fire image detection method combining Convolutional Neural Network(CNN) and Transformer is proposed. In the shallow layer of the model, the CNN-based multiscale feature extraction module is used to obtain rich fire image information. In the deep layers of the model, the powerful global learning ability of the Transformer is used to carry out overall perception and macroscopic understanding of images. The experimental results show that the best detection accuracy of the model can reach 94.62%, and the fastest detection speed can reach 158.12FPS, F1 score is stable at around 94%, which is fully capable of real-time and accurate detection of fire. Compared with the existing detection methods, this method has higher detection accuracy under similar model complexity and detection speed. With similar detection accuracy, our method has a faster detection speed. The proposed method achieves a better balance between model complexity, detection speed, and accuracy.
引用
收藏
页码:49787 / 49811
页数:25
相关论文
共 50 条
  • [1] Multiscale fire image detection method based on CNN and Transformer
    Shengbao Wu
    Buyun Sheng
    Gaocai Fu
    Daode Zhang
    Yuchao Jian
    Multimedia Tools and Applications, 2024, 83 : 49787 - 49811
  • [2] An Efficient Fire Detection Method Based on Multiscale Feature Extraction, Implicit Deep Supervision and Channel Attention Mechanism
    Li, Songbin
    Yan, Qiandong
    Liu, Peng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 8467 - 8475
  • [3] Remote Sensing Image Change Detection Based on Lightweight Transformer and Multiscale Feature Fusion
    Li, Jingming
    Zheng, Panpan
    Wang, Liejun
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2025, 18 : 5460 - 5473
  • [4] An attention-based multiscale transformer network for remote sensing image change detection
    Liu, Wei
    Lin, Yiyuan
    Liu, Weijia
    Yu, Yongtao
    Li, Jonathan
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 202 : 599 - 609
  • [5] Randomly Initialized CNN with Densely Connected Stacked Autoencoder for Efficient Fire Detection
    Khan, Zulfiqar Ahmad
    Hussain, Tanveer
    Ullah, Fath U. Min
    Gupta, Suneet Kumar
    Lee, Mi Young
    Baik, Sung Wook
    ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 116
  • [6] Efficient Deep CNN-Based Fire Detection and Localization in Video Surveillance Applications
    Muhammad, Khan
    Ahmad, Jamil
    Lv, Zhihan
    Bellavista, Paolo
    Yang, Po
    Baik, Sung Wook
    IEEE TRANSACTIONS ON SYSTEMS MAN CYBERNETICS-SYSTEMS, 2019, 49 (07): : 1419 - 1434
  • [7] An Effective Attention-based CNN Model for Fire Detection in Adverse Weather Conditions
    Yar, Hikmat
    Ullah, Waseem
    Khan, Zulfiqar Ahmad
    Baik, Sung Wook
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2023, 206 (335-346) : 335 - 346
  • [8] Remote Sensing Image Classification Method Based on Fusion of CNN and Transformer
    Jin Chuan
    Tong Changqing
    LASER & OPTOELECTRONICS PROGRESS, 2023, 60 (20)
  • [9] MCTFWC: a multiscale CNN-transformer fusion-based model for wound image classification
    Lalit Maurya
    Sarfaraj Mirza
    Signal, Image and Video Processing, 2025, 19 (7)
  • [10] CNN-Transformer Hybrid Architecture for Early Fire Detection
    Yang, Chenyue
    Pan, Yixuan
    Cao, Yichao
    Lu, Xiaobo
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2022, PT IV, 2022, 13532 : 570 - 581