SAR-to-Virtual Optical Image Translation for Improving SAR Automatic Target Recognition

被引:4
作者
Lee, In Ho [1 ]
Park, Chan Gook [1 ]
机构
[1] Seoul Natl Univ, Automat & Syst Res Inst, Dept Aerosp Engn, Seoul 08826, South Korea
关键词
Optical imaging; Radar polarimetry; Optical sensors; Adaptive optics; Synthetic aperture radar; Target recognition; Solid modeling; Deep learning; image translation; synthetic aperture radar (SAR) images; target detection;
D O I
10.1109/LGRS.2023.3312140
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
This letter addresses the challenges associated with interpreting synthetic aperture radar (SAR) images, which provide limited visual information compared with optical images. We propose a new method for generating virtual data and an SAR-to-optical image translation neural network to recognize targets in SAR images. The creation of virtual data involves classifying it into targets and backgrounds. The target data generate a virtual optical image using a 3-D model, while the background data are synthesized by combining the target with the existing SAR image. For image translation using the virtual dataset, we design a modified dense nested U-net that converts images for target recognition. By incorporating the proposed translation network into the YOLO v4 detection algorithm, we verify the impact of virtual optical images on target recognition. The experimental results demonstrate that our proposed method outperforms the conventional approach, which relies solely on SAR target image data for learning.
引用
收藏
页数:5
相关论文
共 15 条
[1]   New SAR target recognition based on YOLO and very deep multi-canonical correlation analysis [J].
Amrani, Moussa ;
Bey, Abdelatif ;
Amamra, Abdenour .
INTERNATIONAL JOURNAL OF REMOTE SENSING, 2022, 43 (15-16) :5800-5819
[2]   Synthesis of Multispectral Optical Images From SAR/Optical Multitemporal Data Using Conditional Generative Adversarial Networks [J].
Bermudez, Jose D. ;
Happ, Patrick N. ;
Feitosa, Raul Q. ;
Oliveira, Dario A. B. .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (08) :1220-1224
[3]   A survey on object detection in optical remote sensing images [J].
Cheng, Gong ;
Han, Junwei .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2016, 117 :11-28
[4]   Automatic Target Recognition in Synthetic Aperture Radar Imagery: A State-of-the-Art Review [J].
El-Darymli, Khalid ;
Gill, Eric W. ;
McGuire, Peter ;
Power, Desmond ;
Moloney, Cecilia .
IEEE ACCESS, 2016, 4 :6014-6058
[5]  
Galloway A, 2019, Arxiv, DOI arXiv:1905.02161
[6]   Image-to-Image Translation with Conditional Adversarial Networks [J].
Isola, Phillip ;
Zhu, Jun-Yan ;
Zhou, Tinghui ;
Efros, Alexei A. .
30TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2017), 2017, :5967-5976
[7]   Mean-Shift-Based Speckle Filtering of Polarimetric SAR Data [J].
Lang, Fengkai ;
Yang, Jie ;
Li, Deren ;
Shi, Lei ;
Wei, Jujie .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (07) :4440-4454
[8]   Generative adversarial networks for SAR image realism [J].
Lewis, Benjamin ;
Liu, Jennifer ;
Wong, Amy .
ALGORITHMS FOR SYNTHETIC APERTURE RADAR IMAGERY XXV, 2018, 10647
[9]   Improving SAR Automatic Target Recognition Models With Transfer Learning From Simulated Data [J].
Malmgren-Hansen, David ;
Kusk, Anders ;
Dall, Jorgen ;
Nielsen, Allan Aasbjerg ;
Engholm, Rasmus ;
Skriver, Henning .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2017, 14 (09) :1484-1488
[10]  
Schmitt M, 2018, Arxiv, DOI arXiv:1807.01569