Validating EURO-CORDEX climate simulations for modelling European wind power generation

被引:11
作者
Luzia, Graziela [1 ]
Koivisto, Matti J. [1 ]
Hahmann, Andrea N. [1 ]
机构
[1] Tech Univ Denmark, Dept Wind & Energy Syst, Roskilde, Denmark
关键词
Wind power generation; Intermittency; Climate change; EURO-CORDEX; CHANGE IMPACTS; VARIABILITY; RESOURCES; SPEED; ATLAS; SEA;
D O I
10.1016/j.renene.2023.118989
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
As the energy system becomes increasingly dependent on intermittent meteorological sources, there is a need to understand better the possible consequences of a changing climate on weather variability and how it will affect wind power generation in the future. Most previous validation studies of regional climate datasets focus on the distributional properties or, in fewer cases, the variability at lower frequencies, such as interannual and seasonal. However, accurate wind variability at a high-enough resolution (e.g., hourly) is crucial for many aspects of power and energy system analyses. Using European country-level wind generation data and metrics relevant to power and energy system applications, we validate the wind speed output from seven regional climate models from the EURO-CORDEX project. We show that the EURO-CORDEX models adjusted with the Global Wind Atlas (GWA2) can simulate temporal dependencies and generation distributions with accuracy similar to or better than the ERA5 reanalysis. The spatial correlations, however, are overestimated compared to observations by most analysed models. Assuming the GWA2 scaling is also valid for the future, the projections under the RCP8.5 scenario show a slight negative trend (2026-2065) in capacity factors for most analysed European countries.
引用
收藏
页数:15
相关论文
共 53 条
[1]  
[Anonymous], 2019, The Wind Power: Onshore wind farm database
[2]  
[Anonymous], 2020, IRENA query tool
[3]   A climate projection dataset tailored for the European energy sector [J].
Bartok, Blanka ;
Tobin, Isabelle ;
Vautard, Robert ;
Vrac, Mathieu ;
Jin, Xia ;
Levavasseur, Guillaume ;
Denvil, Sebastien ;
Dubus, Laurent ;
Parey, Sylvie ;
Michelangeli, Paul-Antoine ;
Troccoli, Alberto ;
Saint-Drenan, Yves-Marie .
CLIMATE SERVICES, 2019, 16
[4]   The Norwegian Earth System Model, NorESM1-M - Part 1: Description and basic evaluation of the physical climate [J].
Bentsen, M. ;
Bethke, I. ;
Debernard, J. B. ;
Iversen, T. ;
Kirkevag, A. ;
Seland, O. ;
Drange, H. ;
Roelandt, C. ;
Seierstad, I. A. ;
Hoose, C. ;
Kristjansson, J. E. .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2013, 6 (03) :687-720
[5]   Quantifying the increasing sensitivity of power systems to climate variability [J].
Bloomfield, H. C. ;
Brayshaw, D. J. ;
Shaffrey, L. C. ;
Coker, P. J. ;
Thornton, H. E. .
ENVIRONMENTAL RESEARCH LETTERS, 2016, 11 (12)
[6]   Hourly historical and near-future weather and climate variables for energy system modelling [J].
Bloomfield, Hannah C. ;
Brayshaw, David J. ;
Deakin, Matthew ;
Greenwood, David .
EARTH SYSTEM SCIENCE DATA, 2022, 14 (06) :2749-2766
[7]   Synergies of sector coupling and transmission reinforcement in a cost-optimised, highly renewable European energy system [J].
Brown, T. ;
Schlachtberger, D. ;
Kies, A. ;
Schramm, S. ;
Greiner, M. .
ENERGY, 2018, 160 :720-739
[8]   Impacts of climate change on wind resources over North America based on NA-CORDEX [J].
Chen, Liang .
RENEWABLE ENERGY, 2020, 153 :1428-1438
[9]   Changes in wind energy potential over China using a regional climate model ensemble [J].
Chen Zhuo ;
Guo Junhong ;
Li Wei ;
Zhang Fei ;
Xiao Chan ;
Pan Zhangrong .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2022, 159
[10]   Non-Hydrostatic RegCM4 (RegCM4-NH): model description and case studies over multiple domains [J].
Coppola, Erika ;
Stocchi, Paolo ;
Pichelli, Emanuela ;
Torres Alavez, Jose Abraham ;
Glazer, Russell ;
Giuliani, Graziano ;
Di Sante, Fabio ;
Nogherotto, Rita ;
Giorgi, Filippo .
GEOSCIENTIFIC MODEL DEVELOPMENT, 2021, 14 (12) :7705-7723