Fast fringe projection profilometry using 3+1 phase retrieval strategy and fringe order correction

被引:4
作者
Li, Fanfei [1 ]
Hu, Jingcheng [2 ]
Zhang, Shaohui [1 ,3 ]
Hu, Yao [1 ]
Xia, Chenxu [4 ]
Hao, Qun [4 ]
机构
[1] Beijing Inst Technol, Sch Opt & Photon, Beijing 100081, Peoples R China
[2] China Elect Technol Grp Corp, Res Inst 54, Shijiazhuang, Peoples R China
[3] Beijing Inst Technol, Sch Opt & Photon, Minist Educ China, Key Lab Photoelect Imaging Technol & Syst, Beijing 100081, Peoples R China
[4] Changchun Univ Sci & Technol, Jilin, Peoples R China
基金
中国国家自然科学基金;
关键词
3D SHAPE MEASUREMENT; FOURIER-TRANSFORM; HILBERT TRANSFORM; ERROR; ALGORITHMS; SCHEME;
D O I
10.1364/AO.476680
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Fringe projection profilometry (FPP) has attracted wide attention in optical 3D measurement field for its high resolution, high accuracy, and simple system construction. However, the inherent requirements of FPP's measurement speed and accuracy are contradictory. We adopt a 3 + 1 phase retrieval strategy combining phase shift and theHilbert transformalgorithm to achieve high-speed, high-precision simultaneous measurements with only four binary fringe patterns. Furthermore, when using temporal phase unwrapping, fringe order errors (FOEs) are inevitable. Although these FOEs do not affect neighboring pixels, they are brought into the final point cloud coordinates by the absolute phase value. We propose a fringe order correction method to eliminate FOEs. The feasibility and effectiveness of this method are verified by the experimental results. (c) 2023 Optica Publishing Group
引用
收藏
页码:348 / 356
页数:9
相关论文
共 34 条
[1]   A numerical spatial carrier for single fringe pattern analysis algorithm [J].
Bahich, Mustapha ;
Afifi, Mohamed ;
Barj, Elmostafa .
OPTIK, 2011, 122 (20) :1821-1824
[2]   Flexible phase error compensation based on Hilbert transform in phase shifting profilometry [J].
Cai, Zewei ;
Liu, Xiaoli ;
Jiang, Hao ;
He, Dong ;
Peng, Xiang ;
Huang, Shujun ;
Zhang, Zonghua .
OPTICS EXPRESS, 2015, 23 (19) :25171-25181
[3]  
Chatterjee A., 2018, IEEE INT C MICROWAVE
[4]   Three-dimensional profilometry with nearly focused binary phase-shifting algorithms [J].
Ekstrand, Laura ;
Zhang, Song .
OPTICS LETTERS, 2011, 36 (23) :4518-4520
[5]   Fringe projection techniques: Whither we are? [J].
Gorthi, Sai Siva ;
Rastogi, Pramod .
OPTICS AND LASERS IN ENGINEERING, 2010, 48 (02) :133-140
[6]   Real-time 3D shape measurement with dual-frequency composite grating and motion-induced error reduction [J].
Guo, Wenbo ;
Wu, Zhoujie ;
Li, Yueyang ;
Liu, Yihang ;
Zhang, Qican .
OPTICS EXPRESS, 2020, 28 (18) :26882-26897
[7]   Defocused binary fringe phase error modeling and compensation using depth-discrete Fourier series fitting [J].
Hu, Jingcheng ;
Zhang, Shaohui ;
Hu, Yao ;
Hao, Qun .
APPLIED OPTICS, 2021, 60 (32) :10047-10054
[8]   Phase invalidity identification framework with the temporal phase unwrapping method [J].
Huang, Lei ;
Asundi, Anand Krishna .
MEASUREMENT SCIENCE AND TECHNOLOGY, 2011, 22 (03)
[9]   Enhanced two-frequency phase-shifting method [J].
Hyun, Jae-Sang ;
Zhang, Song .
APPLIED OPTICS, 2016, 55 (16) :4395-4401
[10]   Single frame digital fringe projection profilometry for 3-D surface shape measurement [J].
Kumar, U. Paul ;
Somasundaram, U. ;
Kothiyal, M. P. ;
Mohan, N. Krishna .
OPTIK, 2013, 124 (02) :166-169