Periodic solutions of the planar N-body problem determine braids through the trajectory of N bodies. Braid types can be used to classify periodic solutions. According to the Nielsen-Thurston classification of surface automorphisms, braids fall into three types: periodic, reducible and pseudo-Anosov. To a braid of pseudo-Anosov type, there is an associated stretch factor greater than 1, and this is a conjugacy invariant of braids. In 2006, the third author discovered a family of multiple choreographic solutions of the planar 2n-body problem. We prove that braids obtained from the solutions in the family are of pseudo-Anosov type, and their stretch factors are expressed in metallic ratios. New numerical periodic solutions of the planar 2n-body problem are also provided.& COPY; 2023 Elsevier B.V. All rights reserved.
机构:
Cent Connecticut State Univ, Dept Math, New Britain, CT 06050 USACent Connecticut State Univ, Dept Math, New Britain, CT 06050 USA
Perdomo, Oscar
Rivera, Andres
论文数: 0引用数: 0
h-index: 0
机构:
Pontificia Univ Javeriana Cali, Fac Ingn & Ciencias, Dept Ciencias Nat & Matemat, Calle 18 118-250, Cali, ColombiaCent Connecticut State Univ, Dept Math, New Britain, CT 06050 USA
Rivera, Andres
Arredondo, John A.
论文数: 0引用数: 0
h-index: 0
机构:
Fdn Univ Konrad Lorenz, Fac Ciencias Ingn, Dept Matemat, Cra 9 Bis 62-43, Bogota, ColombiaCent Connecticut State Univ, Dept Math, New Britain, CT 06050 USA
Arredondo, John A.
Castaneda, Nelson
论文数: 0引用数: 0
h-index: 0
机构:
Cent Connecticut State Univ, Dept Math, New Britain, CT 06050 USACent Connecticut State Univ, Dept Math, New Britain, CT 06050 USA
机构:
Univ Paris 09, Paris, France
IMCCE, Paris Observ, Paris, France
Univ Turin, Dipartimento Matemat Giuseppe Peano, Turin, ItalyUniv Paris 09, Paris, France