DECAY OF FOURIER COEFFICIENTS FOR FURSTENBERG MEASURES

被引:0
作者
Dinh, Tien-Cuong [1 ]
Kaufmann, Lucas [2 ,3 ]
Wu, Hao [1 ]
机构
[1] Natl Univ Singapore, Dept Math, 10 Lower Kent Ridge Rd, Singapore 119076, Singapore
[2] Inst Basic Sci IBS, Ctr Complex Geometry, 55, Expo ro, Daejeon 34126, South Korea
[3] Univ Orleans, Inst Denis Poisson, CNRS, Rue Chartres BP 6759, F-45067 Orleans 02, France
关键词
Random walks on Lie groups; random matrices; Fourier coefficients; Rajchman measures; renewal operators; RANDOM-WALKS; THEOREM;
D O I
10.1090/tran/8882
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let  be the Furstenberg measure associated with a non-elementary probability measure & mu; on SL2(R). We show that, when & mu; has a finite second moment, the Fourier coefficients of  tend to zero at infinity. In other words,  is a Rajchman measure. This improves a recent result of Jialun Li.
引用
收藏
页码:6873 / 6926
页数:54
相关论文
共 23 条
  • [1] Benoist Y, 2016, ERGEB MATH GRENZGEB, V62, P153, DOI 10.1007/978-3-319-47721-3_10
  • [2] CENTRAL LIMIT THEOREM FOR LINEAR GROUPS
    Benoist, Yves
    Quint, Jean-Francois
    [J]. ANNALS OF PROBABILITY, 2016, 44 (02) : 1308 - 1340
  • [3] Random walks on projective spaces
    Benoist, Yves
    Quint, Jean-Francois
    [J]. COMPOSITIO MATHEMATICA, 2014, 150 (09) : 1579 - 1606
  • [4] FOURIER DIMENSION AND SPECTRAL GAPS FOR HYPERBOLIC SURFACES
    Bourgain, Jean
    Dyatlov, Semyon
    [J]. GEOMETRIC AND FUNCTIONAL ANALYSIS, 2017, 27 (04) : 744 - 771
  • [5] Boyer Jean-Baptiste, 2016, ARXIV
  • [6] Dinh TC, 2023, PROBAB THEORY REL, V186, P877, DOI 10.1007/s00440-023-01191-y
  • [7] Spectral gap properties for linear random walks and Pareto's asymptotics for affine stochastic recursions
    Guivarc'h, Y.
    Le Page, E.
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (02): : 503 - 574
  • [8] Kahane Jean-Pierre, 1963, ACTUALITES SCI IND, V1301
  • [9] Kato T., 1995, PERTURBATION THEORY, DOI [10.1007/978-3-642-66282-9, DOI 10.1007/978-3-642-66282-9]
  • [10] RENEWAL THEORY FOR FUNCTIONALS OF A MARKOV-CHAIN WITH GENERAL STATE SPACE
    KESTEN, H
    [J]. ANNALS OF PROBABILITY, 1974, 2 (03) : 355 - 386